【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀并說(shuō)明理由.
【答案】(1)見(jiàn)解析. (2)見(jiàn)解析. (3)△DEF為等邊三角形.見(jiàn)解析.
【解析】
(1)根據(jù)BD⊥直線m,CE⊥直線m得∠BDA=∠CEA=90°,而∠BAC=90°,根據(jù)等角的余角相等得∠CAE=∠ABD,然后根據(jù)“AAS”可判斷△ADB≌△CEA,則AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)由∠BDA=∠AEC=∠BAC=120°,就可以求出∠BAD=∠ACE,進(jìn)而由AAS就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE,即可得出結(jié)論;
(3)由等邊三角形的性質(zhì),可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,進(jìn)而得出△BDF≌△AEF,得出DF=EF,∠BFD=∠AFE,而得出∠DFE=60°,就有△DEF為等邊三角形.
(1)如圖1,
∵BD⊥直線m,CE⊥直線m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)如圖2,
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠DBA=∠CAE,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)如圖3,
由(2)可知,△ADB≌△CEA,
∴BD=AE,∠DBA=∠CAE,
∵△ABF和△ACF均為等邊三角形,
∴∠ABF=∠CAF=60°,BF=AF,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE,
∵在△DBF和△EAF中,
,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF為等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD(AD>AB)中,將它折疊,使點(diǎn)A與點(diǎn)C重合,折痕EF交AD于點(diǎn)E,交BC于點(diǎn)F,交AC于點(diǎn)O,連結(jié)AF,CE.
(1)求證:四邊形AFCE是菱形;
(2)若AE=8,△ABF的面積為9,求AB+BF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知∠AOB,OA=OB,點(diǎn)E在OB邊上,四邊形AEBF是矩形,請(qǐng)你只用無(wú)刻度的直尺在圖中畫(huà)出菱形AOBG.(請(qǐng)保留畫(huà)圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x,y的方程組,其中-3≤a≤1,給出下列結(jié)論:①當(dāng)a=1時(shí),方程組的解也是方程x+y=4-a的解;②當(dāng)a=-2時(shí),x、y的值互為相反數(shù);③若x≤1,則1≤y≤4;④是方程組的解,其中正確的是( )
A.①②B.③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)魏晉時(shí)期數(shù)學(xué)家劉徽首創(chuàng)“割圓術(shù)”計(jì)算圓周率.隨著時(shí)代發(fā)展,現(xiàn)在人們依據(jù)頻率估計(jì)概率這一原理,常用隨機(jī)模擬的方法對(duì)圓周率π進(jìn)行估計(jì),用計(jì)算機(jī)隨機(jī)產(chǎn)生m個(gè)有序數(shù)對(duì)(x,y)(x,y是實(shí)數(shù),且0≤x≤1,0≤y≤1),它們對(duì)應(yīng)的點(diǎn)在平面直角坐標(biāo)系中全部在某一個(gè)正方形的邊界及其內(nèi)部.如果統(tǒng)計(jì)出這些點(diǎn)中到原點(diǎn)的距離小于或等于1的點(diǎn)有n個(gè),則據(jù)此可估計(jì)π的值為 . (用含m,n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們用表示不大于的最大整數(shù),例如:,,;用表示大于的最小整數(shù),例如:,,.解決下列問(wèn)題:
(1)= ,,= ;
(2)若=2,則的取值范圍是 ;若=-1,則的取值范圍是 ;
(3)已知,滿(mǎn)足方程組,求,的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k﹣1)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根,那么k的最大整數(shù)值是( )
A.﹣2
B.﹣1
C.0
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棋盤(pán)中建立如圖的直角坐標(biāo)系,三顆棋子A,O,B的位置如圖,它們分別是(﹣1,1),(0,0)和(1,0).
(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個(gè)軸對(duì)稱(chēng)圖形,請(qǐng)?jiān)趫D中畫(huà)出該圖形的對(duì)稱(chēng)軸;
(2)在其他格點(diǎn)位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個(gè)軸對(duì)稱(chēng)圖形,請(qǐng)直接寫(xiě)出棋子P的位置的坐標(biāo).(寫(xiě)出2個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】喜歡探究的亮亮同學(xué)拿出形狀分別是長(zhǎng)方形和正方形的兩塊紙片,其中長(zhǎng)方形紙片的長(zhǎng)為,寬為,且兩塊紙片面積相等.
(1)亮亮想知道正方形紙片的邊長(zhǎng),請(qǐng)你幫他求出正方形紙片的邊長(zhǎng);(結(jié)果保留根號(hào))
(2)在長(zhǎng)方形紙片上截出兩個(gè)完整的正方形紙片,面積分別為和,亮亮認(rèn)為兩個(gè)正方形紙片的面積之和小于長(zhǎng)方形紙片的總面積,所以一定能截出符合要求的正方形紙片來(lái),你同意亮亮的見(jiàn)解嗎?為什么?(參考數(shù)據(jù):,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com