【題目】已知關(guān)于x、y的方程組

(1)當(dāng)a滿足22a+3﹣22a+1=96時,求方程組的解;

(2)當(dāng)程組的解滿足x+y=16時,求a的值;

(3)試說明:不論a取什么實數(shù),x的值始終為正數(shù).

【答案】(1);(2)a=±4;(3不論a取什么實數(shù), a+12+都為正數(shù)

【解析】試題分析:先由22a+3-22a+1=96a=2,再解方程組,即可得出方程組的解;
2)先根據(jù)方程組,解得,再代入2x-4y=-a2+6a+6,可得2a+9-4-a+7=-a2+6a+6,進(jìn)而得出a的值;

3先把消去y,可得x= a2+a+1,再進(jìn)行配方,即可得出不論a取什么實數(shù),x的值始終為正數(shù).

試題解析:

22a+3﹣22a+1=96 22a+14﹣1=96,

22a+1=32

a=2,

當(dāng)a=2時,方程組為

解得

2由題可得方程組 ,

解得

代入2x4y=a2+6a+6,可得

2a+9﹣4﹣a+7=﹣a2+6a+6

解得a=±4

3 消去y,可得 x= a2+a+1,

由配方得x= a+12+ ,

∵不論a取什么實數(shù), a+12都為非負(fù)數(shù),

∴不論a取什么實數(shù), a+12+ 都為正數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)騎自行車去郊外春游,如圖表示他離家的距離y(千米)與所用的時間x(小時)之間關(guān)系的函數(shù)圖象.

(1)根據(jù)圖象回答:小明到達(dá)離家最遠(yuǎn)的地方需 小時,

(2)小明出發(fā)兩個半小時離家 千米.

(3)小明出發(fā) 小時離家12千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知實數(shù)a、b在數(shù)軸上的位置如圖所示,化簡=_____________;

(2)已知正整數(shù),滿足,則整數(shù)對的個數(shù)是_______________;

(3)ABC,A=50°,BE、CF所在的直線交于點O,BOC的度數(shù)__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a=0.32,b=32c=,d=,則它們的大小關(guān)系是( 。

A. abcd B. badc C. adcb D. cadb

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點P

(1)如果∠A=80°,求∠BPC的度數(shù);

(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點Q,試探索∠Q、∠A之間的數(shù)量關(guān)系.

(3)如圖③,延長線段BPQC交于點E,△BQE中,存在一個內(nèi)角等于另一個內(nèi)角的2倍,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠設(shè)計了一款工藝品,每件成本元,為了合理定價,現(xiàn)投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是元時,每天的銷售量是件,若銷售單價每降低元,每天就可多售出件,但要求銷售單價不得低于元.如果降價后銷售這款工藝品每天能盈利元,那么此時銷售單價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鋼鐵企業(yè)為了適應(yīng)市場競爭的需要,提高生產(chǎn)效率,決定將一部分鋼鐵生產(chǎn)一線員工調(diào)整去從事服務(wù)工作,該企業(yè)有鋼鐵生產(chǎn)一線員工1000人,平均每人可創(chuàng)造年產(chǎn)值30萬元,根據(jù)規(guī)劃,調(diào)整出去的一部分一線員工后,余下的生產(chǎn)一線員工平均每人全年創(chuàng)造年產(chǎn)值可增加30%,調(diào)整到服務(wù)性工作崗位人員平均每人全年可創(chuàng)造產(chǎn)值24萬元,如果要保證員工崗位調(diào)整后,現(xiàn)在全年總產(chǎn)值至少增加20%,且鋼鐵產(chǎn)品的產(chǎn)值不能超過33150萬元,怎樣安排調(diào)整到服務(wù)行業(yè)的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.

(1)求足球和籃球的單價各是多少元;

(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

同步練習(xí)冊答案