【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結論有________(填序號).
【答案】①②④
【解析】
易證△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正確,再根據(jù)角平分線的性質(zhì)可求得∠DAE=∠DCE,即AD=AE=EC,根據(jù)AD=AE=EC可求得④正確
解:①∵BD為△ABC的角平分線,
∴∠ABD=∠CBD,
在△ABD和△EBC中,
,
∴△ABD≌△EBC(SAS),
∴①正確;
②∵BD為△ABC的角平分線,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,
∴②正確;
③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,
∴∠DCE=∠DAE,
∴△ACE為等腰三角形,
∴AE=EC,
∵△ABD≌△EBC,
∴AD=EC,
∴AD=AE=EC,
∵BD為△ABC的角平分線,EF⊥AB,而EC不垂直與BC,
∴EF≠EC,
∴③錯誤;
④過E作EG⊥BC于G點,
∵E是BD上的點,∴EF=EG,
在Rt△BEG和Rt△BEF中,
,
∴Rt△BEG≌Rt△BEF(HL),
∴BG=BF,
在Rt△CEG和Rt△AFE中,
,
∴Rt△CEG≌Rt△AFE(HL),
∴AF=CG,
∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,
∴④正確.
故答案為:①②④.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,點D為AB的中點如果點P在線段BC上以v厘米秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動若點Q的運動速度為3厘米秒,則當△BPD與△CQP全等時,v的值為( )
A. 2.5 B. 3 C. 2.25或3 D. 1或5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將沿直線BC方向平移的位置,G是DE上一點,連接AG,過點A、D作直線MN.
(1)求證:;
(2)若,,判斷AG與DE的位置關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的數(shù)陣是由77個偶數(shù)排成:
(1)如圖中任意作一個平行四邊形框,設左上角的數(shù)為x,那么其他3個數(shù)從小到大可分別表示為 .
(2)小紅說這4個數(shù)的和是292,能求出這4個數(shù)嗎?若存在,請求出這4個數(shù).不存在說明理由.
(3)小明說4個數(shù)的和是420,存在這樣的數(shù)嗎?若存在,請求出這4個數(shù),不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作,與AC、DC分別交于點為CG的中點,連結DE、EH、DH、下列結論: ; ≌; ; 若,則其中結論正確的有
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)請你根據(jù)圖中A、B兩點的位置,分別寫出它們所表示的有理數(shù)
A: ___________ B: _____________ ;
(2)觀察數(shù)軸,與點A的距離為4的點表示的數(shù)是:_____________ ;
(3)若將數(shù)軸折疊,使得A點與-3表示的點重合,則B點與數(shù)_ _表示的點重合;
(4)若數(shù)軸上M、N兩點之間的距離為2014(M在N的左側(cè)),且M、N兩點經(jīng)過(3)中折疊后互相重合,則M、N兩點表示的數(shù)分別是: M: _______ N: _______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:有一長6cm,寬4cm的矩形紙板,現(xiàn)要求以其一組對邊中點所在直線為軸,旋轉(zhuǎn)180°,得到一個圓柱,現(xiàn)可按照兩種方案進行操作:
方案一:以較長的一組對邊中點所在直線為軸旋轉(zhuǎn),如圖①;
方案二:以較短的一組對邊中點所在直線為軸旋轉(zhuǎn),如圖②.
(1)請通過計算說明哪種方法構造的圓柱體積大;
(2)如果該矩形的長寬分別是5cm和3cm呢?請通過計算說明哪種方法構造的圓柱體積大;
(3)通過以上探究,你發(fā)現(xiàn)對于同一個矩形(不包括正方形),以其一組對邊中點所在直線為軸旋轉(zhuǎn)得到一個圓柱,怎樣操作所得到的圓柱體積大(不必說明原因)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點E作EF⊥AB,垂足為點F,與DC的延長線相交于點H,則△DEF的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,交BF于點C,BD平分∠ABC,交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若AB=5,AC=6,求AE,BF之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com