【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,∠ACD=120°.
(1)求證:AC=CD;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
【答案】(1)證明見(jiàn)解析;(2)S陰影=.
【解析】
(1)連接OC,則有∠OCD=90°,由已知從而可得∠A的度數(shù),由內(nèi)角和從而可得∠D的度數(shù),從而得證;
(2)用△OCD的面積減去扇形OCB的面積即可得到陰影部分的面積.
(1)連接OC,∵OC是切線,∴∠OCD=90°,∵∠ACD=120°,∴∠ACO=∠ACD-∠OCD=30°,∵OA=OC,∴∠A=∠ACO=30°,∴∠D=180°-∠A-∠ACD=30°=∠A,∴AC=CD;
(2)由(1)可得∠COD=60°,∠OCD=90°,∴OD=2OC=4,CD=2 ,
∴S陰影=S△OCD-S扇形OCB= ×2×2 - =
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)為獎(jiǎng)勵(lì)在演講比賽中獲獎(jiǎng)的同學(xué),班主任派學(xué)習(xí)委員小明為獲獎(jiǎng)同學(xué)買(mǎi)獎(jiǎng)品,要求每人一件.小明到文具店看了商品后,決定獎(jiǎng)品在鋼筆和筆記本中選擇.如果買(mǎi)4個(gè)筆記本和2支鋼筆,則需86元;如果買(mǎi)3個(gè)筆記本和1支鋼筆,則需57元.
(1)求購(gòu)買(mǎi)每個(gè)筆記本和鋼筆分別為多少元?
(2)售貨員提示,買(mǎi)鋼筆有優(yōu)惠,具體方法是:如果買(mǎi)鋼筆超過(guò)10支,那么超出部分可以享受8折優(yōu)惠,若買(mǎi)x(x>0)支鋼筆需要花y元,請(qǐng)你求出y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,小明決定買(mǎi)同一種獎(jiǎng)品,數(shù)量超過(guò)10個(gè),請(qǐng)幫小明判斷買(mǎi)哪種獎(jiǎng)品省錢(qián).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是等邊△ABC內(nèi)一點(diǎn),且PA=6,PC=8,PB=10,若△APB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60后,得到△AP′C,則∠APC=( ).
A.150°B.120°C.100°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的邊AB為直徑作⊙O經(jīng)過(guò)AC的中點(diǎn)D,然后過(guò)點(diǎn)D作DE⊥BC,垂足為點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若⊙O的直徑為10,,求線段BE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),過(guò)A作線段AB∥y軸(B在A下方),以AB為邊向右作正方形ABCD.設(shè)點(diǎn)B的縱坐標(biāo)為m,二次函數(shù)y=ax2﹣4ax的圖象的頂點(diǎn)為E.
(1)AB= .(用含m的代數(shù)式表示);
(2)當(dāng)點(diǎn)A恰好在二次函數(shù)y=ax2﹣4ax的圖象上時(shí),求二次函數(shù)y=ax2﹣4ax的關(guān)系式.
(3)當(dāng)點(diǎn)E恰為線段BC的中點(diǎn)時(shí),求經(jīng)過(guò)點(diǎn)D的反比例函數(shù)的關(guān)系式;
(4)若a=m+1,當(dāng)二次函數(shù)y=ax2﹣4ax的圖象恰與正方形ABCD有三個(gè)交點(diǎn)且二次函數(shù)頂點(diǎn)E不位于直線BC下方時(shí),直接寫(xiě)出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2-x-(m+1)=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為符合條件的最小整數(shù),求此方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠C=90°,AC=3,BC=4,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a度(0°<a<180°)得到△DCE,點(diǎn)A與點(diǎn)D對(duì)應(yīng),點(diǎn)B與點(diǎn)E對(duì)應(yīng),當(dāng)點(diǎn)D落在△ABC的邊上時(shí),則BD的長(zhǎng)_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)給定的一張矩形紙片ABCD進(jìn)行如下操作:先沿CE折疊,使點(diǎn)B落在CD邊上(如圖①),再沿CH折疊,這時(shí)發(fā)現(xiàn)點(diǎn)E恰好與點(diǎn)D重合(如圖②)
(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;
(2)將該矩形紙片展開(kāi).
①如圖③,折疊該矩形紙片,使點(diǎn)C與點(diǎn)H重合,折痕與AB相交于點(diǎn)P,再將該矩形紙片展開(kāi).求證:∠HPC=90°;
②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點(diǎn),要求只有一條折痕,且點(diǎn)P在折痕上,請(qǐng)簡(jiǎn)要說(shuō)明折疊方法.(不需說(shuō)明理由)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com