拋物線與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,則△ABC的面積為             

 

【答案】

6

【解析】

試題分析:拋物線與x軸交于點(diǎn)A、B,令,變形為,因式分解為,解得x=1,x=-3,所以A、B兩點(diǎn)的橫坐標(biāo)為-3,1;拋物線與y軸交于點(diǎn)C,令x="0," ,所以C點(diǎn)的縱坐標(biāo)為3;△ABC的面積==6

考點(diǎn):拋物線

點(diǎn)評:本題考查拋物線,解答本題需要掌握求拋物線與坐標(biāo)軸交點(diǎn)的方法,并知道這些交點(diǎn)構(gòu)成的三角形的面積跟點(diǎn)的坐標(biāo)的關(guān)系

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在直角坐標(biāo)系中,A、B兩點(diǎn)是拋物線y=x2-(m-3)x-m與x軸的交點(diǎn)(A在B的右側(cè)),x1、x2分別是A、B兩點(diǎn)的橫坐標(biāo),且|x1-x2|=3.
(1)當(dāng)m>0時(shí),求拋物線的解析式.
(2)如果(1)中所求的拋物線與y軸交于點(diǎn)C,問y軸上是否存在點(diǎn)D(不含與C重合的點(diǎn)),使得以D、O、A為頂點(diǎn)的三角形與△AOC相似?若存在,請求出D點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)一次函數(shù)y=kx+b的圖象經(jīng)過拋物線的頂點(diǎn),且當(dāng)k>0時(shí),圖象與兩坐標(biāo)軸所圍成的面積是
15
,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點(diǎn)A(-1,0),與y軸交于點(diǎn)C(0,3),且對稱軸方程為x=1
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)拋物線的頂點(diǎn)為D,在其對稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(4)若點(diǎn)M是拋物線上一點(diǎn),以B、C、D、M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點(diǎn)A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點(diǎn)A、C交y軸于點(diǎn)E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點(diǎn)A、B,且頂點(diǎn)G在直線y=mx+n上,拋物線與y軸交于點(diǎn)F.
(1)點(diǎn)A的坐標(biāo)為
(-3n,0)
(-3n,0)
;B的坐標(biāo)
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樂山模擬)如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個(gè)垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

(1)證明:AB•CD=PB•PD.
(2)如圖乙,也是一個(gè)“三垂圖”,上述結(jié)論成立嗎?請說明理由.
(3)已知拋物線與x軸交于點(diǎn)A(-1,0),B(3,0),與y軸交于點(diǎn)(0,-3),頂點(diǎn)為P,如圖丙所示,若Q是拋物線上異于A、B、P的點(diǎn),使得∠QAP=90°,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=-
1
2
x2+mx+n
與x軸交于不同的兩點(diǎn)A(x1,0),B(x2,0),點(diǎn)A在點(diǎn)B的左邊,拋物線與y軸交于點(diǎn)C,若A,B兩點(diǎn)位于y軸異側(cè),且tan∠CAO=tan∠BCO=
1
3
,求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案