【題目】已知:如圖,在平面直角坐標(biāo)系中,是直角三角形,,點(diǎn)的坐標(biāo)分別為,
(1)求過(guò)點(diǎn)的直線的函數(shù)表達(dá)式
(2)在軸上找一點(diǎn),連接,使得與相似(不包括全等),并求點(diǎn)的坐標(biāo);
(3)在⑵的條件下,如分別是和上的動(dòng)點(diǎn),連接,設(shè),問(wèn)是否存在這樣的使得與相似,如果存在,請(qǐng)求出的值;如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1) y=x+; (2) D(,0);(3)
【解析】
(1)設(shè)過(guò)點(diǎn)A(-3,0),B(1,3)的直線的函數(shù)表達(dá)式為y=kx+b,
由 0=k×(-3)+b ,
3=k+b
解得k=,b=,
∴直線AB的函數(shù)表達(dá)式為y=x+.
(2)如圖,過(guò)點(diǎn)B作BD⊥AB,交x軸于點(diǎn)D,
在Rt△ABC和Rt△ADB中,
∵∠BAC=∠DAB,
∴Rt△ABC∽R(shí)t△ADB,
∴D點(diǎn)為所求,
又tan∠ADB=tan∠ABC=,
∴CD=BC÷tan∠ADB=3÷=,
∴OD=OC+CD=,∴D(,0);
(3)這樣的m存在.
在Rt△ABC中,由勾股定理得AB=5,
如圖,
當(dāng)PQ∥BD時(shí),△APQ∽△ABD,則,
解得m=,
如圖,
當(dāng)PQ⊥AD時(shí),△APQ∽△ADB,
則
解得m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方形OABC繞頂點(diǎn)C(0,5)逆時(shí)針?lè)较蛐D(zhuǎn),當(dāng)旋轉(zhuǎn)到CO′A′B′位置時(shí),邊O′A′交邊AB于D,且A′D=2,AD=4.
(1)求BC長(zhǎng);
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng).
(1)當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),P、Q兩點(diǎn)的距離為 cm;
(2)請(qǐng)你計(jì)算出發(fā)多久時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;
(3)如圖2,以點(diǎn)O為坐標(biāo)原點(diǎn),OC所在直線為x軸,OA所在直線為y軸,1cm長(zhǎng)為單位長(zhǎng)度建立平面直角坐標(biāo)系,連結(jié)AC,與PQ相交于點(diǎn)D,若雙曲線過(guò)點(diǎn)D,問(wèn)k的值是否會(huì)變化?若會(huì)變化,說(shuō)明理由;若不會(huì)變化,請(qǐng)求出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. 將△EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn)
① 當(dāng)時(shí),;② 當(dāng)時(shí),
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線時(shí),直接寫(xiě)出線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示△ABC中,∠C=90°,∠A,∠B的平分線交于D點(diǎn),DE⊥BC于點(diǎn)E,DF⊥AC于點(diǎn)F.
(1)求證:四邊形CEDF為正方形;
(2)若AC=6,BC=8,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一商品銷售某種商品,平均每天可售出20件,每件盈利50元.為了擴(kuò)大銷售,增加盈利,該店采取了降價(jià)措施,在每件盈利不少于25元的前提下,經(jīng)過(guò)一段時(shí)間銷售,發(fā)現(xiàn)銷售單價(jià)每降低1元,平均每天可多售出2件.
(1)若每件商品降價(jià)2元,則平均每天可售出______件;
(2)當(dāng)每件商品降價(jià)多少元時(shí),該商品每天的銷售利潤(rùn)為1600元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線過(guò)點(diǎn).
(1)若點(diǎn)也在該拋物線上,請(qǐng)用含的關(guān)系式表示;
(2)若該拋物線上任意不同兩點(diǎn)、都滿足:當(dāng)時(shí),;當(dāng)時(shí),;若以原點(diǎn)為圓心,為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為、(點(diǎn)在點(diǎn)左側(cè)),且有一個(gè)內(nèi)角為,求拋物線的解析式;
(3)在(2)的條件下,若點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱,且、、三點(diǎn)共線,求證:平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)在我市實(shí)施棚戶區(qū)改造過(guò)程中承包了一項(xiàng)拆遷工程.原計(jì)劃每天拆遷,因?yàn)闇?zhǔn)備工作不足,第一天少拆遷了.從第二天開(kāi)始,該工程隊(duì)加快了拆遷速度,第三天拆遷了.求:
該工程隊(duì)第一天拆遷的面積;
若該工程隊(duì)第二天、第三天每天的拆遷面積比前一天增加的百分?jǐn)?shù)相同,求這個(gè)百分?jǐn)?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足為D.AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F
(1)求證:CE=CF.
(2)將圖(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使點(diǎn)E’落在BC邊上,其它條件不變,如圖(2)所示.試猜想:BE'與CF有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com