【題目】如圖,OAOB,引射線OC(點C在∠AOB外),OD平分∠BOCOE平分∠AOD

1)若∠BOC=40°,請依題意補全圖,并求∠BOE的度數(shù);

2)若∠BOC=αα180°),請直接寫出∠BOE的度數(shù)(用含α的代數(shù)式表示).

【答案】1)∠BOE=35°;(2)∠BOE=45°-α

【解析】

1)首先根據(jù)角平分線的定義求得∠BOD的度數(shù),然后求得∠AOD的度數(shù),根據(jù)角平分線的定義求得∠DOE,然后根據(jù)∠BOE=DOE-BOD;

2)與(1)解法相同.

1)如圖,

OD是∠BOC的平分線,

∴∠COD=BOD=20°,

∴∠AOD=BOD+AOB=20°+90°=110°,

又∵OE是∠AOD的平分線,

∴∠DOE=AOD=55°,

∴∠BOE=DOE-BOD=55°-20°=35°;

2)同(1)可得∠COD=BOD=,

AOD=α+90°

DOE=AOD=+90°=α+45°,

則∠BOE=α+45°-α=45°-α

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】本學期學校開展以感受中華傳統(tǒng)美德為主題的研學活動,組織150名學生參觀歷史博物館和民俗展覽館,每一名學生只能參加其中一項活動,共支付票款2000元,票價信息如下:

地點

票價

歷史博物館

10/

民俗展覽館

20/

(1)請問參觀歷史博物館和民俗展覽館的人數(shù)各是多少人?

(2)若學生都去參觀歷史博物館,則能節(jié)省票款多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DE∥AC交AB于E,DFAB交AC于F,若AF=6,則四邊形AEDF的周長是(  。

A. 24 B. 28 C. 32 D. 36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

如圖,已知:平行四邊形ABCD中,∠BCD的平分線CE交邊ADE∠ABC的平分線BGCEF,交ADG.求證:AE=DG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組: 并寫出它的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt中,∠ 90°,平分

(1)尺規(guī)作圖:作線段的垂直平分線;(要求:保留作圖痕跡,不寫作法)

(2)記直線的交點分別是點,.當時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:兩邊分別相等且其中一組等邊的對角相等的兩個銳角三角形全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點DAB上,AD=AC,AF⊥CDCD于點E,交CB于點F,則CF的長是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABE為等腰直角三角形,ABE=90°,BC=BD,FAD=30°

(1)求證:ABC≌△EBD;

(2)求AFE的度數(shù).

查看答案和解析>>

同步練習冊答案