【題目】某茶葉店準(zhǔn)備從茶農(nóng)處采購(gòu)甲、乙兩種不同品質(zhì)的鐵觀音,已知采購(gòu)2斤甲型鐵觀音和1斤乙型鐵觀音共需要550元,采購(gòu)3斤甲型鐵觀音和2斤乙型鐵觀音共需要900元.

1)甲、乙兩種型號(hào)的鐵觀音每斤分別是多少元?

2)該茶葉店準(zhǔn)備用不超過(guò)3500元的資金采購(gòu)甲、乙兩種型號(hào)的鐵觀音共20斤,其中甲種型號(hào)的鐵觀音不少于8斤,采購(gòu)的斤數(shù)需為整數(shù),那么該茶店有幾種采購(gòu)方案?

3)在⑵的條件下,已知該茶葉店銷售甲型鐵觀音1斤可獲利mm>0)元,銷售乙型鐵觀音1斤可獲利50元,則該茶葉店哪種進(jìn)貨方案可獲利最多?

【答案】1)甲型鐵觀音每斤200元,乙型鐵觀音每斤150元;(2)有三種方案:①購(gòu)買甲型號(hào)鐵觀音8斤,乙型號(hào)鐵觀音12斤;②購(gòu)買甲型號(hào)鐵觀音9斤,乙型號(hào)鐵觀音11斤;③購(gòu)買甲型號(hào)鐵觀音10斤,乙型號(hào)鐵觀音10斤;(3)當(dāng)時(shí),第一種方案獲利最多;當(dāng)時(shí),三種方案獲利一樣; 時(shí),第三種方案獲利最多.

【解析】

1)根據(jù)題意可以列出相應(yīng)的方程組,從而可以解答本題;

2)根據(jù)題意可以得到相應(yīng)的不等式組,從而可以求得有幾種采購(gòu)方案;

3)根據(jù)(2)中的購(gòu)買方案計(jì)算出三種方案的利潤(rùn),然后再進(jìn)行比較即可.

解:(1)設(shè)甲型鐵觀音單價(jià)/斤,乙型鐵觀音鐵觀音單價(jià)/斤,

列方程組得:

解得:

經(jīng)檢驗(yàn)符合題意,

答:甲型鐵觀音每斤200元,乙型鐵觀音每斤150元.

2)設(shè)購(gòu)買甲型號(hào)鐵觀音斤,則購(gòu)買乙型號(hào)鐵觀音斤,依題意得,

解得,

為整數(shù)

所以有三種方案如下:

購(gòu)買甲型號(hào)鐵觀音8斤,乙型號(hào)鐵觀音12斤;

購(gòu)買甲型號(hào)鐵觀音9斤,乙型號(hào)鐵觀音11斤;

購(gòu)買甲型號(hào)鐵觀音10斤,乙型號(hào)鐵觀音10斤;

3)有(2)得,三種方案可獲利情況:

方案一:(元)

方案二:(元)

方案三:(元)

當(dāng)時(shí),第一種方案獲利最多;

當(dāng)時(shí),三種方案獲利一樣;

時(shí),第三種方案獲利最多.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,于點(diǎn)

1)如圖1,若的角平分線交于點(diǎn),,,求的度數(shù);

2)如圖2,點(diǎn)分別在線段上,將折疊,點(diǎn)落在點(diǎn)處,點(diǎn)落在點(diǎn)處,折痕分別為,且點(diǎn),點(diǎn)均在直線上,若,試猜想之間的數(shù)量關(guān)系,并加以證明;

3)在(2)小題的條件下,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一個(gè)角度),記旋轉(zhuǎn)中的(如圖3),在旋轉(zhuǎn)過(guò)程中,直線與直線交于點(diǎn),直線與直線交于點(diǎn),若,是否存在這樣的兩點(diǎn),使為直角三角形?若存在,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)角的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,BD,CE是角平分線,圖中的等腰三角形共有( )

A. 6個(gè) B. 5個(gè) C. 4個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD為矩形,AD=20cm、AB=10cm.M點(diǎn)從DA,P點(diǎn)從BC,兩點(diǎn)的速度都為2cm/s;N點(diǎn)從AB,Q點(diǎn)從CD,兩點(diǎn)的速度都為1cm/s.若四個(gè)點(diǎn)同時(shí)出發(fā).

(1)判斷四邊形MNPQ的形狀.

(2)四邊形MNPQ能為菱形嗎?若能,請(qǐng)求出此時(shí)運(yùn)動(dòng)的時(shí)間;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠ACB90°,AD平分∠BACBCD,DEABEBEAE+AF,連結(jié)BF,判斷△BDF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)(1)班課外活動(dòng)小組利用標(biāo)桿測(cè)量學(xué)校旗桿的高度,如圖所示,已知標(biāo)桿高度CD=3m,標(biāo)桿與旗桿的水平距離BD=15m,人的眼睛與地面的高度EF=1.6m,人與標(biāo)桿CD的水平距離DF=2m,則旗桿AB的高度 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為,點(diǎn),另拋物線經(jīng)過(guò)點(diǎn),M為它的頂點(diǎn).

求拋物線的解析式;

的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),A2,2).

(Ⅰ)若點(diǎn)B4,2),C3,5),請(qǐng)判斷△ABC的形狀,并說(shuō)明理由;

(Ⅱ)已知點(diǎn)Mm,0),N0,n)(n0),若∠MAN90°,且mn=﹣,求m2+n2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩條互相平行的河岸,在河岸一邊測(cè)得AB20米,在另一邊測(cè)得CD70米,用測(cè)角器測(cè)得∠ACD=30°,測(cè)得∠BDC=45°,求兩條河岸之間的距離.( ≈1.7,結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案