【題目】在平面直角坐標系中,點O為坐標原點,A2,2).

(Ⅰ)若點B4,2),C3,5),請判斷△ABC的形狀,并說明理由;

(Ⅱ)已知點Mm0),N0n)(n0),若∠MAN90°,且mn=﹣,求m2+n2的值.

【答案】(Ⅰ)詳見解析;(Ⅱ)

【解析】

)畫出圖形即可判斷.
)如圖2中,作ADy軸于DAEOME.證明ADN≌△AEMASA),推出DN=EM,可得2-n=m-2,即m+n=4,再利用完全平方公式即可解決問題.

解:()如圖1中,A2,2),B4,2),C3,5),

ABC如圖示

觀察圖形可知CACB,

∴△ABC是等腰三角形.

)如圖2中,作ADy軸于D,AEOME

A2,2),

ADAE,四邊形ADOE是正方形,

∵∠DAE=∠MAN90°,

∴∠DAN=∠MAE,

∵∠ADN=∠MEA90°,

∴△ADN≌△AEMASA),

DNEM,

2nm2,

m+n4,

m2+2mn+n216,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,A(-4,0),B(6,0),C(2,4),D(-3,2).

(1)求四邊形ABCD的面積;

(2)y軸上找一點P,使△APB的面積等于四邊形的一半P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某茶葉店準備從茶農(nóng)處采購甲、乙兩種不同品質(zhì)的鐵觀音,已知采購2斤甲型鐵觀音和1斤乙型鐵觀音共需要550元,采購3斤甲型鐵觀音和2斤乙型鐵觀音共需要900元.

1)甲、乙兩種型號的鐵觀音每斤分別是多少元?

2)該茶葉店準備用不超過3500元的資金采購甲、乙兩種型號的鐵觀音共20斤,其中甲種型號的鐵觀音不少于8斤,采購的斤數(shù)需為整數(shù),那么該茶店有幾種采購方案?

3)在⑵的條件下,已知該茶葉店銷售甲型鐵觀音1斤可獲利mm>0)元,銷售乙型鐵觀音1斤可獲利50元,則該茶葉店哪種進貨方案可獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元進行批量生產(chǎn),已知生產(chǎn)每件產(chǎn)品的成本為40元.在銷售過程中發(fā)現(xiàn),年銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額-生產(chǎn)成本-投資)為z(萬元).

(1)試寫出y與x之間的函數(shù)關系式(不必寫出x的取值范圍);

(2)試寫出z與x之間的函數(shù)關系式(不必寫出x的取值范圍);

(3)計算銷售單價為160元時的年獲利,并說明同樣的年獲利,銷售單價還可定為多少元?相應的年銷售量分別為多少萬件?

(4)公司計劃:在第一年按年獲利最大確定的銷售單價,進行銷售;第二年年獲利不低于1130萬元.請你借助函數(shù)的大致圖象說明,第二年的銷售單價x(元)應確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式,并探究

……

1)寫出第④個等式:______;

2)某同學發(fā)現(xiàn),四個連續(xù)自然數(shù)的積加上1后,結果都將是某一個整數(shù)的平方.當這四個數(shù)較大時可以進行簡便計算,如:

請你猜想寫出第n個等式,用含有n的代數(shù)式表示,并通過計算驗證你的猜想.

3)任何實數(shù)的平方都是非負數(shù)(即),一個非負數(shù)與一個正數(shù)的和必定是一個正數(shù)(即時,).根據(jù)以上的規(guī)律和方法試說明:無論x為什么實數(shù),多項式的值永遠都是正數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點P在AC上,PM交AB于點E,PN交BC于點F,當PE=2PF時,AP=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售的籃球和足球的進貨價格分別是每個30元,40元.商場銷售5個籃球和1個足球,可獲利76元;銷售6個籃球和3個足球,可獲利120元.

1)求該商場籃球和足球的銷售價格分別是多少?

2)商場準備用不多于2500元的資金購進籃球和足球共70個,問最少需要購進籃球多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y1=x+mx軸、y軸分別交于點AB,與雙曲線x0)分別交于點C、D,且C點的坐標為(﹣1,2).

1)分別求出直線AB及雙曲線的解析式;

2)求出點D的坐標;

3)利用圖象直接寫出:當x在什么范圍內(nèi)取值時,y1y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ABAC,AB的垂直平分線DEAB、AC于點E、D,若ABCBCD的周長分別為21cm13cm,求ABC的各邊長.

查看答案和解析>>

同步練習冊答案