【題目】已知,點(diǎn)O是直線AB上一點(diǎn),OC、OD為從點(diǎn)O引出的兩條射線,∠BOD=30°,∠COD=∠AOC.

(1)如圖,求∠AOC的度數(shù);

(2)如圖,在∠AOD的內(nèi)部作∠MON=90°,請(qǐng)直接寫出∠AON∠COM之間的數(shù)量關(guān)系   ;

(3)在(2)的條件下,若OM∠BOC的角平分線,試說(shuō)明∠AON=∠CON.

【答案】(1)∠AOC=70°;(2)∠AON+20°=∠COM;(3)詳見解析.

【解析】

1)由題意可知AOD=AOC+∠COD,即∠AOC+AOC=150°,求解即可;

2)由角的和差關(guān)系即可得出結(jié)論;

3OM是∠BOC的角平分線,可以求出∠CON=MONCOM=35°,而∠AON=AOCCON=35°,即可得出結(jié)論

1)由題意可知AOB=180°,BOD=30°,AOD=AOBBOD=150°.

∵∠AOD=AOC+∠COD,COD=AOC,∴∠AOC+AOC=150°,∴∠AOC=70°;

2)∵AOC=70°,∴∠AON+∠NOC=70°①.

∵∠MON=90°,∠MOC+∠NOC=90°②,由①②可得AON+20°=COM;

3∵∠AOC=70°,AOB=180°,∴∠BOC=AOBAOC=110°.

OM是∠BOC的角平分線,∴∠COM=BOC=55°.

∵∠MON=90°,∴∠CON=MONCOM=35°.

∵∠AOC=70°,∴∠AON=AOCCON=35°,∴∠AON=CON

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究多邊形內(nèi)角和問題.

連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線.從多邊形某一個(gè)頂點(diǎn)出發(fā)的×對(duì)角線可以把一個(gè)多邊形分成幾個(gè)三角形.這樣就把多邊形內(nèi)角和問題轉(zhuǎn)化為三角形內(nèi)角和問題了.

(1)請(qǐng)你試一試,做一做,把下面表格補(bǔ)充完整:

名稱

圖形

內(nèi)角和

三角形

180°

四邊形

2×180°=360°

五邊形

   

六邊形

   

根據(jù)表格探究發(fā)現(xiàn)的規(guī)律,完成下面的問題:

(2)七邊形的內(nèi)角和等于   度;

(3)如果一個(gè)多邊形有n條邊,請(qǐng)你用含有n的代數(shù)式表示這個(gè)多邊形的內(nèi)角和:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若順次連接四邊形的各邊中點(diǎn)所得的四邊形是菱形,則該四邊形一定是(  )

A. 矩形 B. 一組對(duì)邊相等,另一組對(duì)邊平行的四邊形

C. 對(duì)角線互相垂直的四邊形 D. 對(duì)角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市居民用水實(shí)行階梯收費(fèi),每戶每月用水量如果未超過(guò)20噸,按每噸元收費(fèi)如果超過(guò)20噸,未超過(guò)的部分按每噸元收費(fèi),超過(guò)的部分按每噸元收費(fèi)設(shè)某戶每月用水量為x噸,應(yīng)收水費(fèi)為y元.

設(shè)某戶居民每月用水量為m,則應(yīng)收水費(fèi)為______用含m的代數(shù)式表示;

設(shè)某戶居民每月用水量為m,則應(yīng)收水費(fèi)為______用含m的代數(shù)式表示;

若該城市某戶5月份水費(fèi)平均為每噸元,求該戶5月份用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB=α(30°<α<45°),∠AOB的余角為∠AOC,∠AOB的補(bǔ)角為∠BOD,OM平分∠AOC,ON平分∠BOD.

(1)OA可能在∠BOD的內(nèi)部,也可能在∠BOD的外部,請(qǐng)分兩種情況,在下圖中用直尺、量角器畫出射線OD,ON的準(zhǔn)確位置;

(2)當(dāng)α=40°時(shí),求(1)中∠MON的度數(shù),要求寫出計(jì)算過(guò)程;

(3)用含α的代數(shù)式表示∠MON的度數(shù).(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:

(1)4-m=-m; (2)56-8x=11+x;

(3) x+1=5+x; (4)-5x+6+7x=1+2x-3+8x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD內(nèi)放入六個(gè)小正方形后形成一個(gè)中心對(duì)稱圖形,其中頂點(diǎn)E、F分別在邊BC、AD上,則長(zhǎng)AD與寬AB的比值為( )

A.6:5
B.13:10
C.8:7
D.4:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和爸爸周末步行去游泳館游冰,爸爸先出發(fā)了一段時(shí)間后小明才出發(fā),途中小明在離家1400米處的報(bào)亭休息了一段時(shí)間后繼續(xù)按原來(lái)的速度前往游泳館.兩人離家的距離y(米)與小明所走時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象信息解答下列問題:

(1)小明出發(fā)   分鐘后第一次與爸爸相遇;

(2)分別求出爸爸離家的距離y1和小明到達(dá)報(bào)亭前離家的距離y2與時(shí)間x之間的函數(shù)關(guān)系式;

(3)求小明在報(bào)亭休息了多長(zhǎng)時(shí)間遇到姍姍來(lái)遲的爸爸;

(4)若游泳館離小明家2000米,請(qǐng)你通過(guò)計(jì)算說(shuō)明誰(shuí)先到達(dá)游泳館.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D。AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F

(1)求證:CE=CF。

(2)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點(diǎn)E′落在BC邊上,其它條件不變,如圖(2)所示。試猜想:BE′與CF有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊(cè)答案