【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學(xué)習(xí)小組經(jīng)過(guò)合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路完成解答過(guò)程.

【答案】解:如圖,在△ABC中,AB=15,BC=14,AC=13, 設(shè)BD=x,則CD=14﹣x,
由勾股定理得:AD2=AB2﹣BD2=152﹣x2 , AD2=AC2﹣CD2=132﹣(14﹣x)2 ,
故152﹣x2=132﹣(14﹣x)2 ,
解之得:x=9.
∴AD=12.
∴SABC= BCAD= ×14×12=84.

【解析】
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=x2﹣4x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C是此拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)C在反比例函數(shù)(k≠0)的圖象上,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BD是△ABC的角平分線,點(diǎn)E、F分別在邊AB、BC上,ED∥BC,EF∥AC.求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于拋物線y=x2﹣2x+1,下列說(shuō)法錯(cuò)誤的是( 。
A.開口向上
B.與x軸有兩個(gè)重合的交點(diǎn)
C.對(duì)稱軸是直線x=1
D.當(dāng)x>1時(shí),y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD=BC,AC=BD.
(1)求證:△ADB≌△BCA;
(2)OA與OB相等嗎?若相等,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】任意一條線段EF,其垂直平分線的尺規(guī)作圖痕跡如圖所示.若連接EH,HF,F(xiàn)G,GE,則下列結(jié)論中,不一定正確的是(  )
A.△EGH為等腰三角形
B.△EGF為等邊三角形
C.四邊形EGFH為菱形
D.△EHF為等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊△ABC的邊長(zhǎng)為2,P是BC邊上的任一點(diǎn)(與B、C不重合),連接AP,以AP為邊向兩側(cè)作等邊△APD和等邊△APE,分別與邊AB、AC交于點(diǎn)M、N(如圖1).

(1)求證:AM=AN;
(2)設(shè)BP=x.
①若BM= ,求x的值;
②求四邊形ADPE與△ABC重疊部分的面積S與x之間的函數(shù)關(guān)系式以及S的最小值;
③連接DE分別與邊AB、AC交于點(diǎn)G、H(如圖2).當(dāng)x為何值時(shí),∠BAD=15°?此時(shí),以DG、GH、HE這三條線段為邊構(gòu)成的三角形是什么特殊三角形,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案