【題目】(1)如圖1,求證:三角形的三條角平分線相交于一點,并且這一點到三邊的距離相等;
(2)如圖2,若的平分線與外角的平分線相交于點連接,若,則是 度.
【答案】(1)詳見解析;(2)59°
【解析】
(1)設∠A和∠B的平分線交于點O,連接OC,作OG,OE,OF與各邊垂直,根據(jù)角平分線的性質(zhì)和判定判定定理可得;
(2)作PE⊥BC,PF⊥AC,PG⊥AB,根據(jù)角平分線性質(zhì)和判定可得P在∠GAC的平分線上,根據(jù)臨補角定義可得.
(1)證明:設∠A和∠B的平分線交于點O,連接OC,作OG,OE,OF與各邊垂直,
∵AO平分∠BAC,
∴O到AB、AC的距離相等,即OG=OF
同理O到BA、BC的距離相等,即OG=OE
∴OG=OE=OF,O到CA、CB距離相等,
∴O在∠BCA的平分線上,
∴三角形三條邊的三條角平分線相交于一點,這一點到三邊的距離相等;
(2)解:作PE⊥BC,PF⊥AC,PG⊥AB
因為CP平分∠ACD
BP平分∠ABC
所以PB=PF=PG
所以P在∠GAC的平分線上,
所以∠PAC=∠GAC
=
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖BE//CF,BE、CF分別平分∠ABC和∠BCD, 求證:AB//CD
證明:∵ BE、CF分別平分∠ABC和∠BCD(已知)
∴ ∠1=∠ ∠2=∠ ( )
∵ BE//CF( )
∴ ∠1=∠2( )
∴ ∠ABC=∠BCD
即∠ABC=∠BCD
∴ AB//CD( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解中學生獲取信息的主要渠道,設置“A:報紙,B:電視,C:網(wǎng)絡,D:身邊的人,E:其他”五個選項(五項中必選且只能選一項)的調(diào)查問卷,先隨機抽取50名中學生進行該問卷調(diào)查,根據(jù)調(diào)查的結(jié)果繪制條形圖如圖,該調(diào)查的方式和圖中a的值分別是( )
A. 抽樣調(diào)查,24 B. 普查,24 C. 抽樣調(diào)查,26 D. 普查,26
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一張三角形紙片ABC(如圖甲),其中AB=AC.將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為BD(如圖乙).再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為EF(如圖丙).原三角形紙片ABC中,∠ABC的大小為______°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD∥BC,AC=8,BD=6,.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣為了了解2018年初中畢業(yè)生畢業(yè)后的去向,對部分九年級學生進行了抽樣調(diào)查,就九年級學生的四種去向(A.讀普通高中;B.讀職業(yè)高中;C.直接進入社會就業(yè);D.其他)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(如圖①②)請問:
(1)本次共調(diào)查了_ 名初中畢業(yè)生;
(2)請計算出本次抽樣調(diào)查中,讀職業(yè)高中的人數(shù)和所占百分比,并將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若該縣2018年九年級畢業(yè)生共有人,請估計該縣今年九年級畢業(yè)生讀職業(yè)高中的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點A,點B,兩動點D,E分別從點A,點B同時出發(fā)向點O運動(運動到點O停止),運動速度分別是1個單位長度/秒和 個單位長度/秒,設運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F.
(1)求點A,點B的坐標;
(2)用含t的代數(shù)式分別表示EF和AF的長;
(3)當四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com