【題目】如圖,在△ABD中,C為BD上一點(diǎn),使得CA=CD,過(guò)點(diǎn)C作CE∥AD交AB于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AD交AC的處長(zhǎng)線于點(diǎn)F.
(1)若CD=3,求AF的長(zhǎng);
(2)若∠B=30°,∠ADC=40°,求證:AC=EC.
【答案】(1)6;(2)證明見(jiàn)解析
【解析】
(1)由等腰三角形的性質(zhì)可得∠CAD=∠CDA,由余角的性質(zhì)可得∠F=∠CDF,可得CD=CF=3,即可求解;
(2)由三角形內(nèi)角和定理可求∠CAB=70°,由平行線的性質(zhì)和外角的性質(zhì)可求∠AEC=∠CAB=70°,即可求解.
解:(1)∵CA=CD=3,
∴∠CAD=∠CDA,
∵AD⊥DF,
∴∠ADF=90°,
∴∠F+∠FAD=90°,∠ADC+∠CDF=90°,
∴∠F=∠CDF,
∴CD=CF=3,
∴AF=AC+CF=6;
(2)∵∠B=30°,∠ADC=∠CAD=40°,
∴∠CAB=180°﹣30°﹣40°﹣40°=70°,
∵CE∥AD,
∴∠BCE=∠ADC=40°,
∴∠AEC=∠B+∠BCE=70°,
∴∠AEC=∠CAB,
∴AC=CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E分別在邊BC,AB上,BD=AD=AC,AD與CE相交于點(diǎn)F,AE2=EF·EC.
(1)求證:∠ADC=∠DCE+∠EAF;
(2)求證:AF·AD=AB·EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形四個(gè)角上,分別剪去大小相等的等腰直角三角形,當(dāng)三角形的直角邊由小變大時(shí),陰影部分的面積也隨之發(fā)生變化,它們的變化情況如下:
三角形的直角邊長(zhǎng)/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
陰影部分的面積/ | 398 | 392 | 382 | 368 | 350 | 302 | 272 | 200 |
(1)在這個(gè)變化過(guò)程中,自變量、因變量各是什么?
(2)請(qǐng)將上述表格補(bǔ)充完整;
(3)當(dāng)?shù)妊苯侨切蔚闹苯沁呴L(zhǎng)由增加到時(shí),陰影部分的面積是怎樣變化的?
(4)設(shè)等腰直角三角形的直角邊長(zhǎng)為,圖中陰影部分的面積為,寫出與的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人做擲一個(gè)均勻小立方體的游戲,立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6,任意擲出小立方體后,若朝上的數(shù)字小于3,則甲獲勝;若朝上的數(shù)字大于3 ,則乙獲勝.你認(rèn)為這個(gè)游戲?qū)滓译p方公平嗎?為什么?你能不能就上面的小立方體設(shè)計(jì)一個(gè)較為公平的游戲?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形ABCD中,BD⊥AD,E為BD上一點(diǎn),AE=BC,CE⊥BD,CE=ED
(1)已知AB=10,AD=6,求CD;
(2)如圖2,F為AD上一點(diǎn),AF=DE,連接BF,交BF交AE于G,過(guò)G作GH⊥AB于H,∠BGH=75°.求證:BF=2GH+EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,y軸上有一點(diǎn)A(0,1),點(diǎn)B是x軸上一點(diǎn),∠ABO=60°,拋物線y=﹣x2++3與x軸交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)).
(1)將點(diǎn)C向右平移個(gè)單位得到點(diǎn)E,過(guò)點(diǎn)E作直線l⊥x軸,點(diǎn)P為y軸上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ⊥y軸交直線l于點(diǎn)Q,點(diǎn)K為拋物線上第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),當(dāng)△ABK面積最大時(shí),求KQ+QP+PE的最小值,及此時(shí)點(diǎn)P的坐標(biāo);
(2)在(1)的條件下,將線段PE繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后得線段PE′,問(wèn):在第一象限內(nèi)是否存在點(diǎn)S,使得△SPE'是有一個(gè)角為60°,且以線段PE′為斜邊的直角三角形,若存在請(qǐng)直接寫出所有滿足條件的點(diǎn)S,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC、∠ADC的平分線分別交CD、AB上點(diǎn)E、F.
(1)若∠ABC=∠ADC,求征:∠ADF=∠ABE;
(2)如圖,若∠A與∠C互樸,試探究∠ADF與∠ABE之同的數(shù)量夫系,并說(shuō)明理由;
(3)如圖,在(2)的條件下,當(dāng)DA⊥AB時(shí),試探究BE與DF的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com