【題目】如圖,菱形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是菱形外一點(diǎn),DE∥AC,CE∥BD.
(1)求證:四邊形DECO是矩形;
(2)連接AE交BD于點(diǎn)F,當(dāng)∠ADB=30°,DE=2時(shí),求AF的長(zhǎng)度.
【答案】(1)詳見解析;(2)
【解析】
(1)根據(jù)菱形的性質(zhì)求出∠DOC=90°,根據(jù)平行四邊形和矩形的判定即可得出結(jié)論;
(2)求出DF=FO,解直角三角形求出OD,求出OF,根據(jù)勾股定理求出AF即可.
(1)∵四邊形ABCD是菱形,∴AC⊥BD,即∠DOC=90°.
∵DE∥AC,CE∥BD,∴四邊形DECO是平行四邊形,∴四邊形DECO是矩形;
(2)∵四邊形ABCD是菱形,∴AO=OC.
∵四邊形DECO是矩形,∴DE=OC.
∵DE=2,∴DE=AO=2.
∵DE∥AC,∴∠OAF=∠DEF.
在△AFO和△EFD中,∵,∴△AFO≌△EFD(AAS),∴OF=DF.
在Rt△ADO中,tan∠ADB,∴,∴DO=2,∴FO,∴AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司在羊年春節(jié)晚會(huì)上舉行一個(gè)游戲,規(guī)則如下:有4張背面相同的卡片,正面分別是喜羊羊、美羊羊、慢羊羊、懶羊羊的頭像,分別對(duì)應(yīng)1000元、600元、400元、200元的獎(jiǎng)金,現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,讓員工抽取,每人有兩次抽獎(jiǎng)機(jī)會(huì),兩次抽取的獎(jiǎng)金之和作為公司發(fā)的年終獎(jiǎng)金.現(xiàn)有兩種抽取的方案:①小芳抽取方案是:直接從四張牌中抽取兩張.②小明抽取的方案是:先從四張牌中抽取一張后放回去,再從四張中再抽取一張.你認(rèn)為是小明抽到的獎(jiǎng)金不少于1000元的概率大還是小芳抽取到的獎(jiǎng)金不少于1000元的概率大?請(qǐng)用樹形圖或列表法進(jìn)行分析說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“六一”兒童節(jié)期間,某商廈為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(轉(zhuǎn)盤被平均分成16份),并規(guī)定:顧客每購買100元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)哪個(gè)區(qū)域,顧客就可以獲得相應(yīng)的獎(jiǎng)品.
顏色 | 獎(jiǎng)品 |
紅色 | 玩具熊 |
黃色 | 童話書 |
綠色 | 彩筆 |
小明和媽媽購買了125元的商品,請(qǐng)你分析計(jì)算:
(1)小明獲得獎(jiǎng)品的概率是多少?
(2)小明獲得童話書的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料并解答問題:
例:解方程x4﹣5x2+4=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè)x2=y(tǒng),那么x4=y(tǒng)2,于是原方程可變?yōu)?/span>y2﹣5y+4=0,
解得y1=1,y2=4.
當(dāng)y=1時(shí),x2=1,∴x=±1;
當(dāng)y=4時(shí),x2=4,∴x=±2;
∴原方程有四個(gè)根:x1=1,x2=﹣1,x3=2,x4=﹣2.
仿照上例解方程:(x2﹣2x)2+(x2﹣2x)﹣6=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是半徑為1的圓O的一條弦,且AB=a<1,以AB為一邊在圓O內(nèi)作正△ABC,點(diǎn)D為圓O上不同于點(diǎn)A的一點(diǎn),且DB=AB=a,DC的延長(zhǎng)線交圓O于點(diǎn)E,則AE的長(zhǎng)為( )
A. B. 1 C. D. a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡CD旁一棵樹AB的高度,他們先在點(diǎn)C處測(cè)得樹頂B的仰角為 60°,然后在坡頂D測(cè)得樹頂B的仰角為300,已知斜坡CD的長(zhǎng)度為20m,DE的長(zhǎng)為10m,則樹AB的高度是( ) m
A. B. 30 C. D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BCA=90°,AC=BC,點(diǎn)D是BC的中點(diǎn),點(diǎn)F在線段AD上,DF=CD,BF交CA于E點(diǎn),過點(diǎn)A作DA的垂線交CF的延長(zhǎng)線于點(diǎn)G,下列結(jié)論:①CF2=EFBF;②AG=2DC;③AE=EF;④AFEC=EFEB.其中正確的結(jié)論有________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com