【題目】如圖是一個(gè)正方體的平面展開圖,標(biāo)注了A字母的是正方體的正面,如果正方體的左面與右面標(biāo)注的式子相等.

(1)求x的值.

(2)求正方體的上面和底面的數(shù)字和.

【答案】(1)x=1;(2)4

【解析】

試題分析:(1)正方體的表面展開圖,相對(duì)的面之間一定相隔一個(gè)正方形確定出相對(duì)面,然后列出方程求解即可;

(2)確定出上面和底面上的兩個(gè)數(shù)字3和1,然后相加即可.

解:正方體的表面展開圖,相對(duì)的面之間一定相隔一個(gè)正方形,

“A”與“﹣2”是相對(duì)面,

“3”與“1”是相對(duì)面,

“x”與“3x﹣2”是相對(duì)面,

(1)正方體的左面與右面標(biāo)注的式子相等,

x=3x﹣2,

解得x=1;

(2)標(biāo)注了A字母的是正方體的正面,左面與右面標(biāo)注的式子相等,

上面和底面上的兩個(gè)數(shù)字3和1,

3+1=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、BC上的點(diǎn),且DE∥AC,若S△BDE:S△CDE=1:4,則S△BDE:S△ACD=(  )

A.1:16
B.1:18
C.1:20
D.1:24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一寬為2cm的刻度尺在圓上移動(dòng),當(dāng)刻度尺的一邊與圓相切時(shí),另一邊與圓兩個(gè)交點(diǎn)處的讀數(shù)恰好為“1”和“4”(單位:cm),則該圓的半徑為(  )

A.5cm
B.cm
C.cm
D.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅球1、紅球2),1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是多少;
(2)先從中任意摸出一個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫樹狀圖或列表),求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校剛完成一批結(jié)構(gòu)相同的學(xué)生宿舍的修建,這些宿舍地板需要鋪瓷磚,一天4名一級(jí)技工去鋪4個(gè)宿舍,結(jié)果還剩12 m2地面未鋪瓷磚;同樣時(shí)間內(nèi)6名二級(jí)技工鋪4個(gè)宿舍剛好完成,已知每名一級(jí)技工比二級(jí)技工一天多鋪3 m2瓷磚.

(1)求每個(gè)宿舍需要鋪瓷磚的地板面積.

(2)現(xiàn)該學(xué)校有20個(gè)宿舍的地板和36 m2的走廊需要鋪瓷磚,某工程隊(duì)有4名一級(jí)技工和6名二級(jí)技工,一開始有4名一級(jí)技工來鋪瓷磚,3天后,學(xué)校根據(jù)實(shí)際情況要求2天后必須完成剩余的任務(wù),所以決定加入一批二級(jí)技工一起工作,問需要再安排多少名二級(jí)技工才能按時(shí)完成任務(wù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“珍惜生命,注意安全”是一永恒的話題.在現(xiàn)代化的城市,交通安全晚不能被忽視,下列幾個(gè)圖形是國際通用的幾種交通標(biāo)志,其中不是中心對(duì)稱圖形是(  )
A.禁止行車
B.禁止行人通行
C.禁止車輛長時(shí)間停放
D.禁止車輛臨時(shí)或長時(shí)間停放

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.

(1)若∠AOC=30°,求∠DOE的度數(shù);

(2)若∠AOC=α,直接寫出∠DOE的度數(shù)(用含α的代數(shù)式表示);

(3)在(1)的條件下,∠BOC的內(nèi)部有一射線OG,射線OG∠BOC分為1:4兩部分,求∠DOG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)0為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+4與y軸交于點(diǎn)A,與x軸交于點(diǎn)B、C(點(diǎn)B在點(diǎn)C左側(cè)),且OA=OC=4OB.
(1)求a,b的值;
(2)連接AB、AC,點(diǎn)P是拋物線上第一象限內(nèi)一動(dòng)點(diǎn),且點(diǎn)P位于對(duì)稱軸右側(cè),
過點(diǎn)P作PD⊥AC于點(diǎn)E,分別交x、y軸于點(diǎn)D、H,過點(diǎn)P作PG∥AB交AC于點(diǎn)F,交x軸于點(diǎn)G,設(shè)P(x,y),線段DG的長為d,求d與x之間的函數(shù)關(guān)系(不要求寫出自變量x的取值范圍);
(3)在(2)的條件下,當(dāng)時(shí),連接AP并延長至點(diǎn)M,連接HM交AC于點(diǎn)S,點(diǎn)R是拋物線上一動(dòng)點(diǎn),當(dāng)△ARS為等腰直角三角形時(shí).求點(diǎn)R的坐標(biāo)和線段AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+2的圖象與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(1,m).
(1)求反比例函數(shù)y=(k≠0)的表達(dá)式;
(2)若P是y軸上一點(diǎn),且滿足△ABP的面積為6,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案