【題目】列方程解應(yīng)用題:水果店第一次用500元購進(jìn)某種水果,由于銷售狀況良好,該店又用1650元購進(jìn)該品種水果,所購數(shù)量比第一次增加200千克,但進(jìn)貨價(jià)每千克上漲了10%.
(1)第一次所購水果的進(jìn)貨價(jià)是每千克多少元?
(2)水果店以相同價(jià)格銷售這些水果,若該水果店售完這些水果獲利不低于1450元,則該種水果的售價(jià)至少應(yīng)為多少元?
【答案】(1)5;(2)9;
【解析】
(1)設(shè)第一次所購水果的進(jìn)貨價(jià)是每千克多少元,由題意可列方程求解.
(2)求出兩次的購進(jìn)千克數(shù),根據(jù)利潤=售價(jià)-進(jìn)價(jià),可求出結(jié)果.
(1)設(shè)第一次購水果x千克,則第二次購進(jìn)水果(x+200)千克。
根據(jù)題意,得
解得:x=100.
經(jīng)檢驗(yàn)x=100是原方程的根.
500÷100=5(元/千克)
答:第一次所購水果的進(jìn)貨價(jià)是每千克5元;
(2)設(shè)這兩批水果的銷售價(jià)格為y元/千克.
則(100+200+100)y(500+1650)1450.
解得y9.
答:這兩批水果的售價(jià)至少應(yīng)為9元/千克.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由幾個(gè)相同的邊長為1的小立方塊搭成的幾何體的俯視圖如下圖,格中的數(shù)字表示該位置的小立方塊的個(gè)數(shù).
(1)請?jiān)谙旅娣礁窦堉蟹謩e畫出這個(gè)向何體的主視圖和左視圖.
(2)根據(jù)三視圖;這個(gè)組合幾何體的表面積為 _________ 個(gè)平方單位.(包括底面積)
(3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個(gè)數(shù)可以改變(總數(shù)目不變),則搭成這樣的組合幾何體中的表面積最大是為 _________ 個(gè)平方單位.(包括底面積)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,則有k1k2=﹣1.
(1)應(yīng)用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線經(jīng)過A(2,3),且與y=x+3垂直,求解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,已知四邊形ABCD是正方形,點(diǎn)A在原點(diǎn),點(diǎn)B的坐標(biāo)是(3,1),則點(diǎn)D的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,點(diǎn)E在BC上.過點(diǎn)D作DF∥BC,連接DB.
求證:(1)△ABD≌△ACE;
(2)DF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且B(4,0).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)如果點(diǎn)P(p,0)是x軸上的一個(gè)動點(diǎn),則當(dāng)|PC﹣PD|取得最大值時(shí),求p的值;
(3)能否在拋物線第一象限的圖象上找到一點(diǎn)Q,使△QBC的面積最大,若能,請求出點(diǎn)Q的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1個(gè)單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點(diǎn)都在格點(diǎn)上,請解答下列問題
(1)畫出將△ABC向左平移4個(gè)單位長度后得到的圖形△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)畫出將△ABC關(guān)于原點(diǎn)O對稱的圖形△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形AOBC和四邊形CDEF都是正方形,邊OA在x軸上,邊OB在y軸上,點(diǎn)D在邊CB上,反比例函數(shù)(k>0)在第一象限的圖象經(jīng)過點(diǎn)E,若正方形AOBC和正方形CDEF的面積之差為6,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC是⊙O的直徑,AC切⊙O于點(diǎn)C,AB交⊙O于點(diǎn)D,E為AC的中點(diǎn),連接CD,DE.
(1)求證:DE是⊙O的切線;
(2)若BD=4,CD=3,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com