分析 用t表示出BP、CQ、BQ,然后分兩種情況:①∠BPQ=90°,②∠BQP=90°進(jìn)行討論即可得解.
解答 解:根據(jù)題意,得BP=tcm,CQ=2tcm,BQ=(8-2t)cm,
若△BPQ是直角三角形,則∠BPQ=90°或∠BQP=90°,
①當(dāng)∠BPQ=90°時(shí),
Q在A點(diǎn),CQ=CA=4cm,
4÷2=2(s);
②當(dāng)∠BQP=90°時(shí),∵∠B=60°,
∴∠BPQ=90°-60°=30°,
∴BQ=$\frac{1}{2}$BP,
即8-2t=$\frac{1}{2}$t,
解得t=$\frac{16}{5}$,
故當(dāng)t=2或$\frac{16}{5}$秒時(shí),△BPQ是直角三角形.
故答案為:2或$\frac{16}{5}$.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì),一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)實(shí)際問(wèn)題分兩種情況討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 0 | 3 |
y | 2 | 0 |
A. | k=2,b=3 | B. | k=-$\frac{2}{3}$,b=2 | C. | k=3,b=2 | D. | k=1,b=-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com