【題目】如圖,O是直線AB上一點(diǎn),OD是∠BOC的平分線.
(1)寫出圖中互補(bǔ)的角;
(2)若∠AOC=53°18′,求∠AOD的度數(shù).
【答案】(1)∠AOC與∠BOC,∠BOD與∠AOD,∠COD與∠AOD;(2)116°39′
【解析】
(1)利用鄰補(bǔ)角的定義和角平分線的定義可得互補(bǔ)的角有三對(duì);
(2)先根據(jù)平角的定義可得∠BOC的度數(shù),由角平分線可得∠BOD的度數(shù),最后利用鄰補(bǔ)角的定義可得結(jié)論.
解:(1)∵OD是∠BOC的平分線,
∴∠COD=∠BOD,
∴互補(bǔ)的角有:∠AOC與∠BOC,∠BOD與∠AOD,∠COD與∠AOD.
(2)∵O是直線AB上一點(diǎn),
∴∠AOB=180°,
∴∠BOC=180°﹣∠AOC=180°﹣53°18′=126°42′,
∵OD是∠BOC的平分線,
∴∠BOD=∠BOC=×126°42′=63°21′.
∴∠AOD=180°﹣∠BOD=180°﹣63°21′=116°39′.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長(zhǎng).
【答案】BC=8.
【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識(shí)進(jìn)行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點(diǎn)睛:直徑所對(duì)的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點(diǎn).過點(diǎn)B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn),且y1≥y2,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列語句畫圖:
(1)畫∠AOB=120°;
(2)畫∠AOB的角平分線OC;
(3)反向延長(zhǎng)OC得射線OD;
(4)分別在射線OA、OB、OD上畫線段OE=OF=OG=2cm;
(5)連接EF、EG、FG;
(6)你能發(fā)現(xiàn)EF、EG、FG有什么關(guān)系?∠EFG、∠EGF、∠GEF有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸是直線 x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個(gè)國家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū). 已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,AE∥BC,BE交AD于點(diǎn)F,且AF=DF.
(1)求證:△AFE≌ODFB;
(2)求證:四邊形ADCE是平行四邊形;
(3)當(dāng)AB、AC之間滿足什么條件時(shí),四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點(diǎn)E,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△DCF的位置,并延長(zhǎng)BE交DF于點(diǎn)G.
(1)求證:△BDG∽△DEG;
(2)若EGBG=4,求BE的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=2 ,△ADC與△ABC關(guān)于AC對(duì)
稱,點(diǎn)E、F分別是邊DC、BC上的任意一點(diǎn),且DE=CF,BE、DF相交于點(diǎn)P,則CP的最小值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列兩個(gè)式子:2﹣=2×+1,5﹣=5×+1.給出定義如下:我們稱使等式a﹣b=ab+1成立的一對(duì)有理數(shù)a,b為“共生有理數(shù)對(duì)”,記為(a,b),數(shù)對(duì)(2,),和(5,)都是“共生有理數(shù)對(duì)”.
(1)數(shù)對(duì)(﹣2,1)和(3,)中是“共生有理數(shù)對(duì)”的是 ;
(2)若(a,﹣)是“共生有理數(shù)對(duì)”,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com