【題目】下列兩個(gè)式子:22×+1,55×+1.給出定義如下:我們稱使等式abab+1成立的一對(duì)有理數(shù)ab為“共生有理數(shù)對(duì)”,記為(ab),數(shù)對(duì)(2,),和(5,)都是“共生有理數(shù)對(duì)”.

1)數(shù)對(duì)(﹣2,1)和(3,)中是“共生有理數(shù)對(duì)”的是  ;

2)若(a,﹣)是“共生有理數(shù)對(duì)”,求a的值.

【答案】1)(3)(2a=﹣

【解析】

1)根據(jù)共生有理數(shù)對(duì)的概念,計(jì)算abab+1是否相等,若相等則是共生有理數(shù)對(duì),若不相等則不是共生有理數(shù)對(duì).

2)根據(jù)共生有理數(shù)對(duì)的定義建立方程,解方程即可.

121=﹣3,﹣2×1+1=﹣1,

21≠﹣2×1+1,

(﹣21)不是“共生有理數(shù)對(duì)”,

∴(3是“共生有理數(shù)對(duì)”

故答案為:3,

2)因?yàn)槿簦?/span>a,﹣)是“共生有理數(shù)對(duì)”

所以a﹣(﹣)=a×(﹣+1

解得:a=﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上一點(diǎn),OD是∠BOC的平分線.

1)寫出圖中互補(bǔ)的角;

2)若∠AOC53°18′,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、FBD上,OEOF

1)求證:AECF

2)若AB2,∠AOD120°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線T1:y=-x2-2x+3,T2:y=x2-2x+5,其中拋物線T1與x 軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).P點(diǎn)是x軸上一個(gè)動(dòng)點(diǎn),過P點(diǎn)并且垂直于x軸的直線與拋物線T1和T2分別相交于N、M兩點(diǎn).設(shè)P點(diǎn)的橫坐標(biāo)為t.

(1)用含t的代數(shù)式表示線段MN的長(zhǎng);當(dāng)t為何值時(shí),線段MN有最小值,并求出此最小值;

(2)隨著P點(diǎn)運(yùn)動(dòng),P、M、N三點(diǎn)的位置也發(fā)生變化.問當(dāng)t何值時(shí),其中一點(diǎn)是另外兩點(diǎn)連接線段的中點(diǎn)?

(3)將拋物線T1平移, A點(diǎn)的對(duì)應(yīng)點(diǎn)為A'(m-3,n),其中≤m≤,且平移后的拋物線仍經(jīng)過C點(diǎn),求平移后拋物線頂點(diǎn)所能達(dá)到的最高點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BDCD,過點(diǎn)DBC的平行線,與AB的延長(zhǎng)線相交于點(diǎn)P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA;

3)當(dāng)AB=6,AC=8時(shí),求線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算: 2sin45°+2π01;

2先化簡(jiǎn),再求值 a2b2),其中a=,b=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品根據(jù)以往銷售經(jīng)驗(yàn),每天的售價(jià)與銷售量之間有如下表的關(guān)系:

每千克售價(jià)(元)

38

37

36

35

20

每天銷售量(千克)

50

52

54

56

86

設(shè)當(dāng)單價(jià)從38/千克下調(diào)到x元時(shí),銷售量為y千克,已知yx之間的函數(shù)關(guān)系是一次函數(shù).

(1)求yx的函數(shù)解析式;

(2)如果某商品的成本價(jià)是20/千克,為使某一天的利潤(rùn)為780元,那么這一天的銷售價(jià)應(yīng)為多少元?(利潤(rùn)=銷售總金額﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,學(xué)校從全校30個(gè)班中隨機(jī)抽取了4個(gè)班 (用A,B,C,D表示),對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息,回答下列問題:

(1)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整,并估計(jì)全校共征集多少件作品?

(2)如果全校征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,,將長(zhǎng)方形ABCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)A、BC分別對(duì)應(yīng)點(diǎn)E、F、G.

(1)畫出長(zhǎng)方形EFGD;

(2)連接BDDF、BF,請(qǐng)用含有a、b的代數(shù)式表示的面積;

(3)如果BFCD于點(diǎn)H,請(qǐng)用含有a、b的代數(shù)式表示CH的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案