【題目】對于三個數(shù)a,bc,用max{a,b,c}表示這三個數(shù)中最大數(shù),例如:max{-2,10}=1max

解決問題:

1)填空:max{1,23}=______,如果max{3,4,2x-6}=2x-6,則x的取值范圍為______;

2)如果max{2,x+2-3x-7}=5,求x的值;

3)如圖,在同一坐標(biāo)系中畫出了三個一次函數(shù)的圖象:y=-x-3,y=x-1y=3x-3請觀察這三個函數(shù)的圖象,

在圖中畫出max{-x-3,x-1,3x-3}對應(yīng)的圖象(加粗);

②max{-x-3x-1,3x-3}的最小值為______

【答案】13x≥5;(2x的值為43;(3)①見解析;②-2.

【解析】

1)根據(jù)max{ab,c}表示這三個數(shù)中最大數(shù),進(jìn)行解答即可;

2)分情況討論:①當(dāng)x25時,②當(dāng)3x75時,分別解方程,然后進(jìn)行驗證即可;

3)①三個一次函數(shù)圖象中,上方的部分就是max{-x-3,x-13x-3}對應(yīng)的圖象;

②由圖象可以知,max{x3x1,3x3}的最小值為直線yx3yx1的交點縱坐標(biāo),聯(lián)立解析式求出交點坐標(biāo)即可.

解:(112,33為最大數(shù),故max{1,2,3}3,

max{3,42x6}2x6,

2x6≥4,

解得x≥5

故答案為:3;x≥5;

2)∵max{2x2,3x7}5

∴①當(dāng)x25時,解得x3,驗證得3×37165,成立,

②當(dāng)3x75時,解得x4,驗證得42225,成立

max{2x2,3x7}5時,x的值為43;

3)①如圖所示:

②由圖象可以知,max{x3,x1,3x3}的最小值為直線yx3yx1的交點縱坐標(biāo),

聯(lián)立,解得:

max{-x-3,x-1,3x-3}的最小值為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的頂點A1,1)、B3,1),規(guī)定把等邊△ABC先沿x軸翻折,再向左平移1個單位為一次變換,如果這樣連續(xù)經(jīng)過2018次變換后,等邊△ABC的頂點C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知動點A在函數(shù)y=(x>0)的圖象上,ABx軸于點B,ACy軸于點C,延長CA至點D,使AD=AB,延長BA至點E,使AE=AC,直線DE分別交x軸,y軸于點P,Q,當(dāng)QE:DP=9:25時,圖中的陰影部分的面積等于___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函數(shù)的圖象經(jīng)過點C.

(1)求此反比例函數(shù)的解析式;

(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形AD′C′B,請你通過計算說明點D′在雙曲線上;

(3)請你畫出AD′C,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車行駛時的耗油量為0.1/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.

(1)根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;

(2)求關(guān)于的函數(shù)關(guān)系式,并計算該汽車在剩余油量5升時,已行駛的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,兩個三角形的頂點都在格點(網(wǎng)線的交點)上,下列方案中不能把ABC平移至DEF位置的是(

A.先把ABC沿水平方向向右平移4個單位長度,再向上平移3個單位長度

B.先把ABC向上平移3個單位長度,再沿水平方向向右平移4個單位長度

C.ABC沿BE方向移動5個單位長度

D.ABC沿BE方向移動6個單位長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】適逢中高考期間,某文具店平均每天可賣出鉛筆,賣出支鉛筆的利潤是元,經(jīng)調(diào)查發(fā)現(xiàn),零售單價毎降元,每天可多賣出支鉛筆,為了使每天獲取的利潤更多,該文具店決定把零售單價下降

零售單價下降元后,該文具店平均每天可賣出________支鉛筆,總利潤為________元.

在不考慮其他因素的條件下,當(dāng)定為多少元時,才能使該文具店每天賣鉛筆獲取的利潤為元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:

13x12x3 2

3)(x1)(x3+1 4)(a2+124a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點DABC的邊BC上,AB=AC=CD,AD=BD,求ABC各內(nèi)角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案