【題目】如圖,已知動點A在函數(shù)y=(x>0)的圖象上,ABx軸于點B,ACy軸于點C,延長CA至點D,使AD=AB,延長BA至點E,使AE=AC,直線DE分別交x軸,y軸于點P,Q,當QE:DP=9:25時,圖中的陰影部分的面積等于___

【答案】

【解析】

DFx軸于點F,EGy軸于G,得到QEG∽△PDF,于是得到,設EG=9t,則PF=25t,然后根據(jù)ADE∽△FPD,據(jù)此即可得到關于t的方程,求得t的值,進而求解.

解:作DFx軸于點F,EGy軸于G,

∴△QEG∽△DPF,

,

EG=9t,則PF=25t,

A(9t,),

AC=AE AD=AB,

AE=9t,AD=,DF=,PF=25t,

∵△ADE∽△FPD,

AE:DF=AD:PF,

9t:=:25t,即t2=

圖中陰影部分的面積=×9t×9t+××=

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長均為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC和△DEF(頂點 為網(wǎng)格線的交點),以及經(jīng)過格點的直線m.

(1)畫出△ABC關于直線m對稱的△A1B1C1

(2)將△DEF先向左平移5個單位長度,再向下平移4個單位長度,畫出平移后得到的△D1E1F1;

(3)求∠A+∠E= ________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,已知∠BAC45°,ADBCD,分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到正方形AEGF(AEEGGFAF,EAFEFG=90°)

(1) AD6BD2,求CG的長.

(2) BGa,CGb,BCc.

AE=_______.(ab、c表示)

②利用正方形面積驗證勾股定理

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC10,高BD8AE平分∠BAC,則△ABE的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ACB90°,BCa,ACbABc.將RtABC繞點O依次旋轉(zhuǎn)90°、180°和270°,構成的圖形如圖所示.該圖是我國古代數(shù)學家趙爽制作的“勾股圓方圖”,也被稱作“趙爽弦圖”,它是我國最早對勾股定理證明的記載,也成為了2002年在北京召開的國際數(shù)學家大會的會標設計的主要依據(jù).

1)請利用這個圖形證明勾股定理;

2)請利用這個圖形說明a2b22ab,并說明等號成立的條件;

3)請根據(jù)(2)的結論解決下面的問題:長為x,寬為y的長方形,其周長為8,求當x,y取何值時,該長方形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點DDE⊥AC分別交AC、AB的延長線于點E、F.

(1)求證:EF⊙O的切線;

(2)若AC=4,CE=2,求的長度.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的角平分線相交于點,過點,交,過點.下列五個結論:其中正確的有(

1;(2;(3)點各邊的距離都相等;(4)設,若,則;(5.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點.

(1)求證:BC=DE;

(2)連接AD、BE,若∠BAC=C,求證:四邊形DBEA是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A點的坐標為(a,6),ABx軸于點B,cosOAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點C、D.延長AO交反比例函數(shù)的圖象的另一支于點E.已知點D的縱坐標為

(1)求反比例函數(shù)的解析式;

(2)求直線EB的解析式;

(3)求SOEB

查看答案和解析>>

同步練習冊答案