【題目】如圖1,ABC是等邊三角形,點DBC上一點,點ECA的延長線上,連結EB、ED,且EB=ED.

(1)求證:DEC=ABE;

(2)D關于直線EC的對稱點為M,連接EMBM

①依題意將圖2補全;

②求證:EB=BM.

【答案】1)證明見解析;(2)①作圖見解析;②證明見解析.

【解析】

1)根據(jù)等邊三角形的性質得到∠ABC=ACB=BAC=60°,再根據(jù)等邊對等角以及三角形外角的性質即可得出結論;

2)①根據(jù)題意作出圖形即可;

②由軸對稱的性質得到:DE=EM,DG=GM,再根據(jù)等腰三角形三線合一的性質得到∠2=1.由(1)的結論即可得到∠1=3.再證明△BEM是等邊三角形即可得出結論.

1)∵△ABC是等邊三角形,∴∠ABC=ACB=BAC=60°.

BE=DE,∴∠EBD=EDB,∴∠EBA+ABC=CED+C,∴∠EBA =CED,即∠DEC=ABE

2)①作圖如下:

②∵D、M關于直線AC對稱,∴DE=EMDG=GM,∴∠2=1.由(1)得:∠2=3,∴∠1=3

BE=DE,∴BE=ME

∵∠3+BEA=BAC=60°,∴∠1+BEA=60°,∴∠BEM=60°.

BE=ME,∴△BEM是等邊三角形,∴EB=BM

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.

(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結果保留根號和π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖),然后將剩余部分拼成一個長方形(如圖).

1)上述操作能驗證的等式是   ;(請選擇正確的一個)

Aa22abb2=(ab)2 Ba2b2=(ab)(abCa2aba(ab)

2)應用你從(1)選出的等式,完成下列各題:

①已知x24y212x2y4,求x2y的值.

②計算:(1)(1)(1)…(1)(1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式中,計算正確的是( )
A.31=﹣3
B.33=﹣9
C.32=
D.30=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,則∠DAE等于( )

A.20°
B.25°
C.30°
D.35°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制成如下統(tǒng)計圖表(單位:cm):

A

x<155

B

155x<160

C

160x<165

D

165x<170

E

x170

根據(jù)圖表提供的信息,樣本中,身高在160x170之間的女生人數(shù)為(  )

A. 8 B. 6 C. 14 D. 16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題滿分5畫圖并填空:

如圖,在方格紙內將ABC經過一次平移后得到A′B′C′,圖中標出了點C的對應點C

1畫出平移后的A′B′C′,利用網格點和三角板畫圖

2畫出AB邊上的CD;

3畫出BC邊上的AE;

4在平移過程中高CD掃過的面積 網格中,每一小格單位長度為1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知△ABC,任取一點O,連AO,BO,CO,并取它們的中點D,E,F(xiàn),得△DEF,則下列說法正確的個數(shù)是( ) ①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明為了測量一涼亭的高度AB(頂端A到水平地面BD的距離),在涼亭的旁邊放置一個與涼亭臺階BC等高的臺階DE(DE=BC=0.5米,A、B、C三點共線),把一面鏡子水平放置在平臺上的點G處,測得CG=15米,然后沿直線CG后退到點E處,這時恰好在鏡子里看到涼亭的頂端A,測得EG=3米,小明身高1.6米,則涼亭的高度AB約為(
A.8.5米
B.9米
C.9.5米
D.10米

查看答案和解析>>

同步練習冊答案