【題目】如圖1,已知AD∥BC,∠B=∠D.
(1)求證:AB∥CD;
(2)如圖2,點(diǎn)E為BA延長(zhǎng)線上一點(diǎn),∠EAD與∠BCD的角平分線交于點(diǎn)P.
①求∠APC的度數(shù);
②連接DP,若∠PDC=750,則∠DPC-∠B=________.
【答案】90°
【解析】
(1)根據(jù)平行線的性質(zhì)和判定結(jié)合已知條件進(jìn)行分析證明即可;
(2)①如圖3,過點(diǎn)P作PF∥AB,結(jié)合已知條件易得∠EAP=∠APF,∠DCP=∠CPF,從而可得∠APC=∠EAP+∠DCP,由已知易得∠EAD=∠B,∠B+∠BCD=180°,進(jìn)而可得∠EAD+∠BCD=180°,結(jié)合AP平分∠EAD,CP平分∠BCD即可得到∠APC=∠EAP+∠DCP=90°;②如圖4,延長(zhǎng)DP交BA的延長(zhǎng)線于點(diǎn)M,由已知易得I、∠MPA+∠APF=75°,由∠APC=90°可得II、∠MPA+∠DPC=90°,再證∠APF=∠B,即可由I-II得到所求結(jié)果.
(1)∵AD∥BC,
∴∠ A+∠ B=180°,
∵∠ B=∠ D,即∠ A+∠ D =180°,
∴ AB∥CD;
(2)①過點(diǎn)P作直線PF∥AB,
∵在平行四邊形ABCD中,AB∥CD,AD∥BC,
∴∠EAD=∠B,∠B+∠BCD=180°,AB∥PF∥CD,
∴∠EAD+∠BCD=180°,
∵AP平分∠EAD,CP平分∠BCD,
∴∠EAP=∠EAD,∠DCP=∠BCD,
∴∠EAP+∠DCP=(∠EAD+∠BCD)=90°,
∵AB∥PF∥CD,
∴∠APF=∠EAP,∠CPF=∠DCP,
∴∠APC=∠APF+∠CPF=∠EAP+∠DCP=90°,即∠APC=90°;
②如圖4,延長(zhǎng)DP交BA的延長(zhǎng)線于點(diǎn)M,
∵AB∥PF∥CD,
∴∠APF=∠EAP=∠EAD=∠B,∠MPA+∠APF=∠MPF=∠PDC=75°,
∵∠APC=90°,
∴∠MPA+∠DPC=90°,
∴(∠MPA+∠DPC)-(∠MPA+∠APF)=90°-75°=15°,
∴∠DPC-∠APF=15°,
∴∠DPC-∠B=15°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)C是半圓O上一點(diǎn),∠COB=60°,點(diǎn)D是OC的中點(diǎn),連接BD,BD的延長(zhǎng)線交半圓O于點(diǎn)E,連接OE,EC,BC.
(1)求證:△BDO≌△EDC.
(2)若OB=6,則四邊形OBCE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為點(diǎn)D,點(diǎn)E的坐標(biāo)為(0,﹣1),該拋物線與BE交于另一點(diǎn)F,連接BC.
(1)求該拋物線的解析式;
(2)一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度沿與y軸平行的方向向上運(yùn)動(dòng),連接OM,BM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),在點(diǎn)M的運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),∠OMB=90°?
(3)在x軸上方的拋物線上,是否存在點(diǎn)P,使得∠PBF被BA平分?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中, , 為線段上一點(diǎn), , 為射線上一點(diǎn),且,連接.
()如圖,
①依題意補(bǔ)全圖形.
②若, ,求的長(zhǎng).
()如圖,若,連接并延長(zhǎng),交于點(diǎn),求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)經(jīng)銷商計(jì)劃同時(shí)購(gòu)進(jìn)一批甲、乙兩種型號(hào)手機(jī),若購(gòu)進(jìn)2部甲型號(hào)手機(jī)和5部乙型號(hào)手機(jī),共需要資金6000元;若購(gòu)進(jìn)3部甲型手機(jī)和2部乙型手機(jī),共需要資金4600元.
(1) 求甲、乙型號(hào)手機(jī)每部進(jìn)價(jià)為多少元?
(2) 為了提高利潤(rùn),該店計(jì)劃購(gòu)進(jìn)甲、乙型號(hào)手機(jī)銷售,預(yù)計(jì)用不多于1.84萬元且不少于1.76萬元的資金購(gòu)進(jìn)這兩種手機(jī)共20部,請(qǐng)問有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次男子馬拉松長(zhǎng)跑比賽中,隨機(jī)抽得12名選手所用的時(shí)間(單位:分鐘)得到如下樣本數(shù)據(jù):140 146 143 175 125 164 134 155 152 168 162 148
(1)計(jì)算該樣本數(shù)據(jù)的中位數(shù)和平均數(shù);
(2)如果一名選手的成績(jī)是147分鐘,請(qǐng)你依據(jù)樣本數(shù)據(jù)的中位數(shù),推斷他的成績(jī)?nèi)绾危?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AD是的中線,過點(diǎn)A作與AB的平行線DE交于點(diǎn)與AC相交于點(diǎn)O,連接EC.
求證: ;
當(dāng)滿足條件______時(shí),四邊形ADCE是菱形,請(qǐng)補(bǔ)充條件并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).
(1)直接寫出點(diǎn)E的坐標(biāo) ;
(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動(dòng).若點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,回答下列問題:
①當(dāng)t= 秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
②求點(diǎn)P在運(yùn)動(dòng)過程中的坐標(biāo),(用含t的式子表示,寫出過程);
③當(dāng)3秒<t<5秒時(shí),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問 x,y,z之間的數(shù)量關(guān)系能否確定?若能,請(qǐng)用含x,y的式子表示z,寫出過程;若不能,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com