【題目】某林場(chǎng)計(jì)劃修一條長(zhǎng),斷面為等腰梯形的渠道,斷面面積為,上口寬比渠深多,渠底比渠深多
渠道的上口寬與渠底寬各是多少?
如果計(jì)劃每天挖土,需要多少天才能把這條渠道挖完?
【答案】渠道的上口與渠底寬各是米和米; 需要天才能把這條渠道的土挖完.
【解析】
(1)設(shè)渠道深x米,則上口的寬度是(x+2)米,渠底寬(x+0.4)米,根據(jù)斷面面積為1.6平方米,列出方程,求解即可;
(2)根據(jù)渠道的長(zhǎng)為750米,求出渠道的體積,再根據(jù)每天挖土48立方米,即可求出需要的天數(shù).
設(shè)渠道深米,則上口的寬度是米,渠底寬米,根據(jù)題意得:
,
解得:(舍去),,
則渠道的上口寬是:(米),
渠底寬是(米);
答:渠道的上口與渠底寬各是米和米;
∵渠道的長(zhǎng)為米,
∴渠道的體積為(立方米),
∵每天挖土立方米,
∴需要的天數(shù)是:(天),
答:需要天才能把這條渠道的土挖完.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.
下面有三個(gè)推斷:
①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實(shí)驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;
③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在網(wǎng)格中有一個(gè)四邊形圖案.
(1)請(qǐng)你分別畫(huà)出△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°的圖形,關(guān)于點(diǎn)O對(duì)稱的圖形以及逆時(shí)針旋轉(zhuǎn)90°的圖形,并將它們涂黑;
(2)若網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1,旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)依次為A1,A2,A3,求四邊形AA1A2A3的面積;
(3)這個(gè)美麗圖案能夠說(shuō)明一個(gè)著名結(jié)論的正確性,請(qǐng)寫(xiě)出這個(gè)結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線 與雙曲線 交于、兩點(diǎn),已知點(diǎn),點(diǎn).
(1)求直線和雙曲線的解析式;
(2)把直線沿軸負(fù)方向平移2個(gè)單位后得到直線,直線與雙曲線交于、兩點(diǎn),當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AD是△BAC的角平分線,過(guò)D向AB、AC兩邊作垂線,垂足為E、F,則下列錯(cuò)誤的是( 。
A.DE=DFB.AE=AFC.BD=CDD.∠ADE=∠ADF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為測(cè)量被池塘相隔的兩棵樹(shù),的距離,數(shù)學(xué)課外興趣小組的同學(xué)們?cè)O(shè)計(jì)了如圖所示的測(cè)量方案:從樹(shù)沿著垂直于的方向走到,再?gòu)?/span>沿著垂直于的方向走到,為上一點(diǎn),其中位同學(xué)分別測(cè)得三組數(shù)據(jù):,,,,,,其中能根據(jù)所測(cè)數(shù)據(jù)求得,兩樹(shù)距離的有( )
A. 0組 B. 一組 C. 二組 D. 三組
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點(diǎn)E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:△AEF≌△DEB;
(2)若∠BAC=90°,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,①四邊形ABCD是平行四邊形,線段EF分別交AD、AC、BC于點(diǎn)E、O、F,②EF⊥AC,③AO=CO.
(1)求證:四邊形AFCE是平行四邊形;
(2)在本題①②③三個(gè)已知條件中,去掉一個(gè)條件,(1)的結(jié)論依然成立,這個(gè)條件是 (直接寫(xiě)出這個(gè)條件的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,AB=DC,在四個(gè)論斷“EA=ED,EF⊥AD,AB=DC,FB=FC”中選擇二個(gè)作為已知條件,另一個(gè)作為結(jié)論,構(gòu)成真命題(補(bǔ)充已知和求證),并進(jìn)行證明.
已知、如圖,點(diǎn)A,B,C,D在同一條直線上, .
求證、 .
證明、 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com