【題目】如圖,△ABC中,AB,AC的垂直平分線分別交BCD,E兩點(diǎn),垂足分別是M,N.

(1)若△ADE的周長是10,求BC的長;

(2)若∠BAC=100°,求∠DAE的度數(shù).

【答案】(1)BC=10.(2)20°.

【解析】

(1)由AB、AC的垂直平分線分別交BCD、E,垂足分別是M、N,根據(jù)線段垂直平分線的性質(zhì),可得AD=BD,AE=EC,繼而可得ADE的周長等于BC的長;
(2)由∠BAC=100゜,可求得∠B+C的度數(shù),又由AD=BD,AE=EC,即可求得∠BAD+CAE的度數(shù),繼而求得答案.

解:(1)因?yàn)?/span>AB,AC的垂直平分線分別交BCD,E兩點(diǎn),垂足分別是M,N,

所以AD=BD,AE=CE.

因?yàn)?/span>ADE的周長是10,

所以AD+DE+AE=BD+DE+CE=BC=10,即BC=10.

(2)因?yàn)椤?/span>BAC=100°,

所以∠B+C=180°-BAC=80°.

因?yàn)?/span>AD=BD,AE=CE,

所以∠BAD=B,CAE=C,

所以∠BAD+CAE=80°,所以∠DAE=BAC-(BAD+CAE)=100°-80°=20°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)開學(xué)初,小明到文具批發(fā)部一次性購買某種筆記本,該文具批發(fā)部規(guī)定:這種筆記本售價(jià)y(元/本)與購買數(shù)量x(本)之間的函數(shù)關(guān)系如圖所示

(1)圖中線段AB所表示的實(shí)際意義是

(2)請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式;

(3)已知該文具批發(fā)部這種筆記本的進(jìn)價(jià)是3元/本,若小明購買此種筆記本超過10本但不超過20本,那么小明購買多少本時(shí),該文具批發(fā)部在這次買賣中所獲的利潤W(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為D,E,BE,CD相交于點(diǎn)O,如果AB=AC,那么圖中全等的三角形有( 。

A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=2,BC=1,運(yùn)點(diǎn)P從點(diǎn)B出發(fā),沿路線BCD作勻速運(yùn)動(dòng),那么ABP的面積與點(diǎn)P運(yùn)動(dòng)的路程之間的函數(shù)圖象大致是( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題探究:如圖1,ACBDCE均為等邊三角形,點(diǎn)AD、E在同一直線上,連接BE

①求證:CDA≌△CEB;

②求∠AEB的度數(shù).

(2)問題變式:如圖2,ACBDCE均為等腰直角三角形,∠ACB=DCE=90°,點(diǎn)AD、E在同一直線上,CMDCEDE邊上的高,連接BE

①請(qǐng)求出∠AEB的度數(shù)

②直接寫出線段AE、CM、BE之間的數(shù)量關(guān)系,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的周長為6π,半徑是1的⊙O從與AB相切于點(diǎn)D的位置出發(fā),在△ABC外部按順時(shí)針方向沿三角形滾動(dòng),又回到與AB相切于點(diǎn)D的位置,則⊙O自轉(zhuǎn)了(  )
A.2周
B.3周
C.4周
D.5周

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小劉上午從家里出發(fā),騎車去一家超市購物,然后從這家超市返回家中.小劉離家的路程y(米)和所經(jīng)過的時(shí)間x(分)之間的函數(shù)圖象如圖所示,則下列說法不正確的是(  )

A. 小劉家與超市相距3000 B. 小劉去超市途中的速度是300/

C. 小劉在超市逗留了30分鐘 D. 小劉從超市返回家比從家里去超市的速度快

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定四邊形ABCD為平行四邊形的是( )

A. AB∥CD,AD∥BC B. OA=OC,OB=OD C. AD=BC,AB∥CD D. AB=CD,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8 ,AD=10,點(diǎn)E是CD的中點(diǎn),將這張紙片依次折疊兩次:第一次折疊紙片使點(diǎn)A與點(diǎn)E重合,如圖2,折痕為MN,連接ME、NE;第二次折疊紙片使點(diǎn)N與點(diǎn)E重合,如圖3,點(diǎn)B落到B′處,折痕為HG,連接HE,則下列結(jié)論正確的個(gè)數(shù)是( ) ①M(fèi)E∥HG;②△MEH是等邊三角形;③∠EHG=∠AMN;④tan∠EHG=

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案