【題目】解方程:
(1)x2﹣4x﹣3=0
(2)(x﹣3)2+2x(x﹣3)=0
(3)(x﹣1)2=4
(4)3x2+5(2x+3)=0.
【答案】(1)x1=2+,x2=2﹣(2)x1=3,x2=1(3)無(wú)解
【解析】
(1)先把-3移到右邊,然后兩邊都加4,用配方法求解;
(2)把x-3看作一個(gè)整體,用提取公因式求解即可;
(3)用直接開(kāi)平方法求解即可
(4)先去括號(hào),然后求出b2﹣4ac的值,若b2﹣4ac≥0則用求根公式法求解,若b2﹣4ac<0則方程無(wú)解.
(1)解:x2﹣4x﹣3=0, x2﹣4x=3
x2﹣4x+4=3+4
∴(x﹣2)2=7
∴x﹣2=± ,
∴x1=2+ ,x2=2﹣
(2)解:(x﹣3)2+2x(x﹣3)=0 (x﹣3)(x﹣3+2x)=0,
∴(x﹣3)(3x﹣3)=0,
∴x﹣3=0或3x﹣3=0,
∴x1=3,x2=1
(3)解:(x﹣1)2=4, ∴x﹣1=±2
∴x1=3,x2=﹣1
(4)解:3x2+5(2x+3)=0. 3x2+10x+15=0
∴a=3,b=10,c=15,b2﹣4ac=﹣80<0,
∴原方程無(wú)解
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中有,為坐標(biāo)原點(diǎn),,將此三角形繞原點(diǎn)順時(shí)針旋轉(zhuǎn),得到,二次函數(shù)的圖象剛好經(jīng)過(guò)三點(diǎn).
(1)求二次函數(shù)的解析式及頂點(diǎn)的坐標(biāo);
(2)過(guò)定點(diǎn)的直線與二次函數(shù)圖象相交于兩點(diǎn).
①若,求的值;
②證明:無(wú)論為何值,恒為直角三角形;
③當(dāng)直線繞著定點(diǎn)旋轉(zhuǎn)時(shí),外接圓圓心在一條拋物線上運(yùn)動(dòng),直接寫(xiě)出該拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC=90°,點(diǎn)B是射線AM上一個(gè)動(dòng)點(diǎn),點(diǎn)C是射線AN上的一個(gè)動(dòng)點(diǎn),且線段BC長(zhǎng)度不變,點(diǎn)D是A關(guān)于直線BC的對(duì)稱(chēng)點(diǎn),連接AD,若2AD=BC,則∠ABD的度數(shù)是____________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)B,E分別在AC,DF上,BD,CE均與AF相交,∠1=∠2,∠C=∠D,求證:∠A=∠F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售一批名牌襯衫,平均每天可銷(xiāo)售20件,每件盈利40元.為了擴(kuò)大銷(xiāo)售,增加盈利,盡量減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)5元,商場(chǎng)平均每天可多售出10件.求:
(1)若商場(chǎng)每件襯衫降價(jià)4元,則商場(chǎng)每天可盈利多少元?
(2)若商場(chǎng)平均每天要盈利1200元,每件襯衫應(yīng)降價(jià)多少元?
(3)要使商場(chǎng)平均每天盈利1600元,可能嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC中,BF是AC邊上中線,點(diǎn)D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當(dāng)△AEF周長(zhǎng)最小時(shí),∠CFE的大小是( 。
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,C是AB上一點(diǎn),點(diǎn)D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點(diǎn)F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市從 2018 年 1 月 1 日開(kāi)始,禁止燃油助力車(chē)上路,于是電動(dòng)自 行車(chē)的市場(chǎng)需求量日漸增多.某商店計(jì)劃最多投入 8 萬(wàn)元購(gòu)進(jìn) A、B 兩種型號(hào)的 電動(dòng)自行車(chē)共 30 輛,其中每輛 B 型電動(dòng)自行車(chē)比每輛 A 型電動(dòng)自行車(chē)多 500 元.用 5 萬(wàn)元購(gòu)進(jìn)的 A 型電動(dòng)自行車(chē)與用 6 萬(wàn)元購(gòu)進(jìn)的 B 型電動(dòng)自行車(chē)數(shù)量一 樣.
(1)求 A、B 兩種型號(hào)電動(dòng)自行車(chē)的進(jìn)貨單價(jià);
(2)若 A 型電動(dòng)自行車(chē)每輛售價(jià)為 2800 元,B 型電動(dòng)自行車(chē)每輛售價(jià)為 3500 元,設(shè)該商店計(jì)劃購(gòu)進(jìn) A 型電動(dòng)自行車(chē) m 輛,兩種型號(hào)的電動(dòng)自行車(chē)全部銷(xiāo)售 后可獲利潤(rùn) y 元.寫(xiě)出 y 與 m 之間的函數(shù)關(guān)系式;
(3)該商店如何進(jìn)貨才能獲得最大利潤(rùn)?此時(shí)最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,,點(diǎn)、分別是軸和軸上的一動(dòng)點(diǎn).
(1)如圖,若點(diǎn)的橫坐標(biāo)為,求點(diǎn)的坐標(biāo);
(2)如圖,交軸于,平分,若點(diǎn)的縱坐標(biāo)為,,求點(diǎn)的坐標(biāo).
(3)如圖,分別以、為直角邊在第三、四象限作等腰直角和等腰直角,交軸于,若,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com