【題目】解方程:

(1)x2﹣4x﹣3=0

(2)(x﹣3)2+2x(x﹣3)=0

(3)(x﹣1)2=4

(4)3x2+5(2x+3)=0.

【答案】(1)x1=2+,x2=2﹣(2)x1=3,x2=1(3)無(wú)解

【解析】

(1)先把-3移到右邊,然后兩邊都加4,用配方法求解;

(2)把x-3看作一個(gè)整體,用提取公因式求解即可;

(3)用直接開(kāi)平方法求解即可

(4)先去括號(hào),然后求出b2﹣4ac的值,若b2﹣4ac≥0則用求根公式法求解,b2﹣4ac<0則方程無(wú)解.

(1)解:x2﹣4x﹣3=0, x2﹣4x=3

x2﹣4x+4=3+4

∴(x﹣2)2=7

∴x﹣2=±

∴x1=2+ ,x2=2﹣

(2)解:(x﹣3)2+2x(x﹣3)=0 (x﹣3)(x﹣3+2x)=0,

∴(x﹣3)(3x﹣3)=0,

∴x﹣3=03x﹣3=0,

∴x1=3,x2=1

(3)解:(x﹣1)2=4, ∴x﹣1=±2

∴x1=3,x2=﹣1

(4)解:3x2+5(2x+3)=0. 3x2+10x+15=0

∴a=3,b=10,c=15,b2﹣4ac=﹣80<0,

原方程無(wú)解

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中有,為坐標(biāo)原點(diǎn),,將此三角形繞原點(diǎn)順時(shí)針旋轉(zhuǎn),得到,二次函數(shù)的圖象剛好經(jīng)過(guò)三點(diǎn).

(1)求二次函數(shù)的解析式及頂點(diǎn)的坐標(biāo);

(2)過(guò)定點(diǎn)的直線與二次函數(shù)圖象相交于兩點(diǎn).

①若,求的值;

②證明:無(wú)論為何值,恒為直角三角形;

③當(dāng)直線繞著定點(diǎn)旋轉(zhuǎn)時(shí),外接圓圓心在一條拋物線上運(yùn)動(dòng),直接寫(xiě)出該拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC90°,點(diǎn)B是射線AM上一個(gè)動(dòng)點(diǎn),點(diǎn)C是射線AN上的一個(gè)動(dòng)點(diǎn),且線段BC長(zhǎng)度不變,點(diǎn)DA關(guān)于直線BC的對(duì)稱(chēng)點(diǎn),連接AD,若2ADBC,則∠ABD的度數(shù)是____________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)B,E分別在AC,DF上,BD,CE均與AF相交,∠1=2,C=D,求證:∠A=F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售一批名牌襯衫,平均每天可銷(xiāo)售20,每件盈利40.為了擴(kuò)大銷(xiāo)售,增加盈利,盡量減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)5,商場(chǎng)平均每天可多售出10.:

(1)若商場(chǎng)每件襯衫降價(jià)4,則商場(chǎng)每天可盈利多少元?

(2)若商場(chǎng)平均每天要盈利1200,每件襯衫應(yīng)降價(jià)多少元?

(3)要使商場(chǎng)平均每天盈利1600,可能嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC中,BF是AC邊上中線,點(diǎn)D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當(dāng)△AEF周長(zhǎng)最小時(shí),∠CFE的大小是( 。

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,CAB上一點(diǎn),點(diǎn)DE分別在AB兩側(cè),ADBE,且ADBCBEAC

1)求證:CDCE;

2)連接DE,交AB于點(diǎn)F,猜想BEF的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市從 2018 1 1 日開(kāi)始,禁止燃油助力車(chē)上路,于是電動(dòng)自 行車(chē)的市場(chǎng)需求量日漸增多某商店計(jì)劃最多投入 8 萬(wàn)元購(gòu)進(jìn) A、B 兩種型號(hào)的 電動(dòng)自行車(chē)共 30 輛,其中每輛 B 型電動(dòng)自行車(chē)比每輛 A 型電動(dòng)自行車(chē)多 500 元.用 5 萬(wàn)元購(gòu)進(jìn)的 A 型電動(dòng)自行車(chē)與用 6 萬(wàn)元購(gòu)進(jìn)的 B 型電動(dòng)自行車(chē)數(shù)量一 樣.

(1)求 A、B 兩種型號(hào)電動(dòng)自行車(chē)的進(jìn)貨單價(jià);

(2)若 A 型電動(dòng)自行車(chē)每輛售價(jià)為 2800 ,B 型電動(dòng)自行車(chē)每輛售價(jià)為 3500 元,設(shè)該商店計(jì)劃購(gòu)進(jìn) A 型電動(dòng)自行車(chē) m 輛,兩種型號(hào)的電動(dòng)自行車(chē)全部銷(xiāo)售 后可獲利潤(rùn) y 元.寫(xiě)出 y m 之間的函數(shù)關(guān)系式;

(3)該商店如何進(jìn)貨才能獲得最大利潤(rùn)?此時(shí)最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,,點(diǎn)分別是軸和軸上的一動(dòng)點(diǎn).

(1)如圖,若點(diǎn)的橫坐標(biāo)為,求點(diǎn)的坐標(biāo);

(2)如圖軸于,平分,若點(diǎn)的縱坐標(biāo)為,,求點(diǎn)的坐標(biāo).

(3)如圖,分別以、為直角邊在第三、四象限作等腰直角和等腰直角,軸于,若,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案