【題目】如圖,P是拋物線y=x2﹣4x+3上的一點(diǎn),以點(diǎn)P為圓心、1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線y=0相切時(shí),點(diǎn)P的坐標(biāo)為 .
【答案】(2+ ,1)或(2﹣ ,1)或(2,﹣1)
【解析】解:當(dāng)y=1時(shí),x2﹣4x+3=1,
解得:x=2± ,
∴P(2+ ,1)或(2﹣ ,1),
當(dāng)y=﹣1時(shí),x2﹣4x+3=﹣1,
解得:x1=x2=2,
∴P(2,﹣1),
則點(diǎn)P的坐標(biāo)為:(2+ ,1)或(2﹣ ,1)或(2,﹣1).
⊙P與直線y=0相切時(shí)就是:⊙P與x軸相切,半徑為1個(gè)單位長(zhǎng)度,即點(diǎn)P的縱坐標(biāo)|y|=1,根據(jù)P是拋物線y=x2﹣4x+3上的一點(diǎn),代入計(jì)算出x的值,并寫出點(diǎn)P的坐標(biāo),一共有3種可能.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的圓O經(jīng)過(guò)點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.
(1)判斷CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O半徑為6cm,AE=10cm,求∠ADE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y=(m<0)位于第二象限的圖像上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)A作AC⊥x
軸于點(diǎn)C;M為是線段AC的中點(diǎn),過(guò)點(diǎn)M作AC的垂線,與反比例函數(shù)的圖像及y軸分別交于B、
D兩點(diǎn).順次連接A、B、C、D.設(shè)點(diǎn)A的橫坐標(biāo)為n.
(1)求點(diǎn)B的坐標(biāo)(用含有m、n的代數(shù)式表示);
(2)求證:四邊形ABCD是菱形;
(3)若△ABM的面積為2,當(dāng)四邊形ABCD是正方形時(shí),求直線AB的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)一班20名女生某次體育測(cè)試的成績(jī)統(tǒng)計(jì)如下:
成績(jī)(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)如果這20名女生體育成績(jī)的平均分?jǐn)?shù)是82分,求x、y的值;
(2)在(1)的條件下,設(shè)20名學(xué)生測(cè)試成績(jī)的眾數(shù)是a,中位數(shù)是b,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在AB上,△DAC、△EBC均是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N,則下列結(jié)論:①AE=DB;②CM=CN;③△CMN為等邊三角形;④MN//BC;
正確的有_________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過(guò)C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若CD=2AD,⊙O的直徑為20,求線段AC、AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課題學(xué)習(xí):我們知道二次函數(shù)的圖象是拋物線,它也可以這樣定義:如果一個(gè)動(dòng)點(diǎn)M(x,y)到定點(diǎn)A(0,m)(m>0)的距離與它到定直線y=﹣m的距離相等,那么動(dòng)點(diǎn)M形成的圖形就是拋物線y=ax2(a>0)的圖象,如圖所示.
(1)探究:當(dāng)x≠0時(shí),a與m有何數(shù)量關(guān)系?
(2)應(yīng)用:已知?jiǎng)狱c(diǎn)M(x,y)到定點(diǎn)A(0,4)的距離與到定直線y=﹣4的距離相等,請(qǐng)寫出動(dòng)點(diǎn)M形成的拋物線的解析式.
(3)拓展:根據(jù)拋物線的平移變換,拋物線y= (x﹣1)2+2的圖象可以看作到定點(diǎn)A( , )的距離與它到定直線y=的距離相等的動(dòng)點(diǎn)M(x,y)所形成的圖形.
(4)若點(diǎn)D的坐標(biāo)是(1,8),在(2)中求得的拋物線上是否存在點(diǎn)P,使得PA+PD最短?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)點(diǎn)P在拋物線的對(duì)稱軸上,若線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△DEF中,DE=DF,點(diǎn)B在EF邊上,且∠EBD=60°,C是射線BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合,且BC≠BE),在射線BE上截取BA=BC,連接AC.
(1)當(dāng)點(diǎn)C在線段BD上時(shí),
①若點(diǎn)C與點(diǎn)D重合,請(qǐng)根據(jù)題意補(bǔ)全圖1,并直接寫出線段AE與BF的數(shù)量關(guān)系為________;
②如圖2,若點(diǎn)C不與點(diǎn)D重合,請(qǐng)證明AE=BF+CD;
(2)當(dāng)點(diǎn)C在線段BD的延長(zhǎng)線上時(shí),用等式表示線段AE,BF,CD之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com