【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計如圖所示.圓O的圓心與矩形ABCD對角線的交點重合,且圓與矩形上下兩邊相切(E為上切點),與左右兩邊相交(F,G為其中兩個交點),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m,根據(jù)設(shè)計要求,若∠EOF=45°,則此窗戶的透光率(透光區(qū)域與矩形窗面的面積的比值)為 .
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平面內(nèi)有兩條直線AB、CD,且AB∥CD,P為一動點.
(1)當點P移動到AB、CD之間時,如圖(1),這時∠P與∠A、∠C有怎樣的關(guān)系?證明你的結(jié)論;
(2)當點P移動到圖(2)、圖(3)的位置時,∠P、∠A、∠C又有怎樣的關(guān)系?請分別寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)通過計算下列各式的值探究問題:
①= ;= ;= ;= .
探究:對于任意非負有理數(shù)a,= .
②= ;= ;= ;= .
探究:對于任意負有理數(shù)a,= .
綜上,對于任意有理數(shù)a,= .
(2)應(yīng)用(1)所得的結(jié)論解決問題:有理數(shù)a,b在數(shù)軸上對應(yīng)的點的位置如圖所示,化簡:--+|a+b|.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖放置的兩個正方形,大正方形ABCD邊長為a,小正方形CEFG邊長為b(a>b),M在BC邊上,且BM=b,連接AM,MF,MF交CG于點P,將△ABM繞點A旋轉(zhuǎn)至△ADN,將△MEF繞點F旋轉(zhuǎn)至△NGF,給出以下五個結(jié)論:①∠MAD=∠AND;②CP=b﹣ ;③△ABM≌△NGF;④S四邊形AMFN=a2+b2;⑤A,M,P,D四點共圓,其中正確的個數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知一個角的補角比它的余角的 3 倍大 30°,求這個角的度數(shù);
(2)如圖,點 C、D在線段 AB上, D是線段 AB的中點, AC AD , AB6,求線段 CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,平行四邊形 ABCD中,O是CD的中點,連接AO并延長,交BC的延長線于點E.
(1)求證:△AOD ≌ △EOC;
(2)連接AC,DE,當∠B∠AEB _______ °時,四邊形ACED是正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】縣內(nèi)某小區(qū)正在緊張建設(shè)中,現(xiàn)有大量的沙石需要運輸,“建安”車隊有載重量為8噸、10噸的卡車共12輛,全部車輛運輸一次能運輸110噸沙石.
(1)求“建安”車隊載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的進展,“建安”車隊需要一次運輸沙石165噸以上,為了完成任務(wù),準備新增購這兩種卡車共6輛,車隊有多少種購買方案,請你一一寫出.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com