【題目】已知關(guān)于x的方程有兩個不相等的實(shí)數(shù)根,.
求a的取值范圍;
是否存在實(shí)數(shù)a,使方程的兩個實(shí)數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說明理由.
【答案】(1)a< ;(2)不存在.
【解析】
(1)根據(jù)題意,應(yīng)滿足兩個條件:△>0,二次項(xiàng)系數(shù)不等于0,由此求解即可;(2)利用根與系數(shù)的關(guān)系求得字母的值后(注意檢驗(yàn)原方程是否有實(shí)數(shù)根),結(jié)合(1)的取值范圍解答即可.
(1)已知方程有兩個不相等實(shí)數(shù)根,則方程首先滿足是一元二次方程,
∴a2≠0且滿足△=(2a-1)2-4a2>0,
∴a<且a≠0;
(2)不存在這樣的a.
∵方程的兩個實(shí)數(shù)根x1,x2互為相反數(shù),
則x1+x2=- ,
解得a=,
經(jīng)檢驗(yàn)a=是方程的根.
∵(1)中求得方程有兩個不相等實(shí)數(shù)根,
a的取值范圍是a<且a≠0,
而a=>(不符合題意).
所以不存在這樣的a值,使方程的兩個實(shí)數(shù)根互為相反數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六一期間,某公園游戲場舉行“迎奧運(yùn)”活動.有一種游戲的規(guī)則是:在一個裝有個紅球和若干個白球(每個球除顏色外其他相同)的袋中,隨機(jī)摸一個球,摸到一個紅球就得到一個奧運(yùn)福娃玩具.已知參加這種游戲活動為人次,公園游戲場發(fā)放的福娃玩具為個.
求參加一次這種游戲活動得到福娃玩具的概率;
請你估計袋中白球接近多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,,點(diǎn)的坐標(biāo)為,,點(diǎn)為線段上的動點(diǎn)(點(diǎn)不與、重合),連接,作,且,過點(diǎn)作軸,垂足為點(diǎn).
(1)求證:;
(2)猜想的形狀并證明結(jié)論;
(3)如圖2,當(dāng)為等腰三角形時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑畫⊙O,交AC于點(diǎn)D,半徑OE∥BD,連接BE,DE,BD,設(shè)BE交AC于點(diǎn)F,若∠DEB=∠DBC.
(1)求證:BC是⊙O的切線;
(2)若BF=BC=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的垂直平分線MD交AC于點(diǎn)D,AB于M,以下結(jié)論:①△BCD是等腰三角形;②射線BD是△ACB的角平分線;③△BCD的周長C△BCD=AC+BC;④△ADM≌BCD.正確的有( )
A.①②③B.①②C.①③D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,
(1)求∠BAD和∠DAC的度數(shù);
(2)若DE平分∠ADB,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A(2,0)的兩條直線,分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.
(1)求點(diǎn)B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com