【題目】已知等腰三角形的兩邊分別是49,則該等腰三角形的周長(zhǎng)為_____

【答案】22

【解析】

求等腰三角形的周長(zhǎng),即是確定等腰三角形的腰與底的長(zhǎng)求周長(zhǎng);題目給出等腰三角形有兩條邊長(zhǎng)為4cm9cm,而沒有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗(yàn)證能否組成三角形

當(dāng)4為底時(shí),其它兩邊都為9,99、4可以構(gòu)成三角形,周長(zhǎng)為22;

當(dāng)4為腰時(shí),其它兩邊為94,因?yàn)?/span>4+4=89,所以不能構(gòu)成三角形,故舍去.

故答案為:22

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若方程x2+kx+9=0有兩個(gè)相等的實(shí)數(shù)根,則k=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度.(精確到0.1)(參考數(shù)據(jù): ≈1.414, ≈1.132)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:-22+5=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=2,EAB的中點(diǎn),直線平行于直線EC,且直線與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點(diǎn)A恰好落在直線上, 則DF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知F是以AC為直徑的半圓O上任意一點(diǎn),過AC上任意一點(diǎn)H作AC的垂線分別交CF,AF的延長(zhǎng)線于點(diǎn)E,B,點(diǎn)D是線段BE的中點(diǎn).

(1)求證:DF是⊙O的切線;

(2)若BF=AF,求證AF2=EF·CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A,BO,C為數(shù)軸上四點(diǎn),點(diǎn)A對(duì)應(yīng)數(shù)aa﹣2),點(diǎn)O對(duì)應(yīng)0,點(diǎn)C對(duì)應(yīng)3,AB=2 AB表示點(diǎn)A到點(diǎn)B的距離).

1)填空:點(diǎn)C到原點(diǎn)O的距離   ,:點(diǎn)B對(duì)應(yīng)的數(shù)   .(用含有a的式子)

2)如圖2,將一刻度尺放在數(shù)軸上,刻度尺上“6cm”“8.7cm”分別對(duì)應(yīng)數(shù)軸上的點(diǎn)O和點(diǎn)C,若BC=5,求a的值和點(diǎn)A在刻度尺上對(duì)應(yīng)的刻度.

3)如圖3,在(2)的條件下,點(diǎn)A1單位長(zhǎng)度/秒的逮度向右運(yùn)動(dòng),同時(shí)點(diǎn)C向左運(yùn)動(dòng),若運(yùn)動(dòng)3秒時(shí),點(diǎn)A和點(diǎn)C到原點(diǎn)D的距離相等,求點(diǎn)C的運(yùn)動(dòng)速度.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列所述圖形中,既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的是( )

A. 矩形 B. 平行四邊形 C. 正五邊形 D. 正三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,多邊形OABCDE的頂點(diǎn)坐標(biāo)為O(0,0),A(2,0),B(2,2),C(4,2),D(4,4),E(0,4),若如圖過點(diǎn)M(1,2)的直線MP(與y軸交于點(diǎn)P)將多邊形OABCDE分割成面積相等的兩部分,則直線MP的函數(shù)表達(dá)式是

查看答案和解析>>

同步練習(xí)冊(cè)答案