【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD的長為(
A. cm
B. cm
C. cm
D.4cm

【答案】A
【解析】解:連接OD,OC,作DE⊥AB于E,OF⊥AC于F,
∵∠CAD=∠BAD(角平分線的性質(zhì)),
,
∴∠DOB=∠OAC=2∠BAD,
∴△AOF≌△ODE,
∴OE=AF= AC=3(cm),
在Rt△DOE中,DE= =4(cm),
在Rt△ADE中,AD= =4 (cm).
故選:A.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和圓心角、弧、弦的關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】對于三個數(shù)a,b,c,M{a,b,c}表示這三個數(shù)的平均數(shù)min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{-1,2,3}=min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個邊長為6的等邊三角形電子跳蚤游戲盤.如果跳蚤開始時在AB邊的P0處,且BP0=1,跳蚤第一步從P0跳到BC邊的P1(第1次落點)處,且BP1=BP0;第二步從P1跳到AC邊的P2(第2次落點)處,且CP2=CP1;第三步從P2 跳到AB邊的P3(第3次落點)處,且AP3=AP2;…;跳蚤按上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數(shù)),則點P2017P2018之間的距離為( 。

A. 1 B. 2 C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰RtABC中,∠BAC=90°.點D從點B出發(fā)沿射線BC移動,以AD為腰作等腰RtADE,DAE=90°.連接CE.

(1)如圖,求證:△ACE≌△ABD;

(2)點D運動時,∠BCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說明理由;

3)若AC=,當CD=1時,請求出DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,MAN=90°,射線AE在這個角的內(nèi)部,點BC分別在∠MAN的邊AM、AN上,且AB=ACCFAE于點F,BDAE于點D.求證:ABD≌△CAF;

2)如圖2,點B、C分別在∠MAN的邊AM、AN上,點E、F都在∠MAN內(nèi)部的射線AD上,∠1、2分別是ABE、CAF的外角.已知AB=AC,且∠1=2=BAC.求證:ABE≌△CAF;

3)如圖3,在ABC中,AB=AC,ABBC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=2=BAC.若ABC的面積為15,求ACFBDE的面積之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE;

2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A為函數(shù)y= (x>0)圖象上一點,連結(jié)OA,交函數(shù)y= (x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為

查看答案和解析>>

同步練習冊答案