【題目】如圖,的半徑為,點(diǎn)、、、在上,且四邊形是矩形,點(diǎn)是劣弧上一動(dòng)點(diǎn),、分別與相交于點(diǎn)、點(diǎn).當(dāng)且時(shí),的長度為( )
A. B. C. D.
【答案】A
【解析】
作輔助線,構(gòu)建矩形的對角線,根據(jù)等邊對等角得∠ABP=∠APB,由同弧所對的圓周角相等可得∠ACB=∠ACP,進(jìn)而得到AF=FC.根據(jù)矩形的四個(gè)角都是直角得∠ABC=90°,AE=EF=FD得FC=2FD,∠DCF=30°,得出∠ACB=30°,求出BC的長,AD的長,再三等分即可.
連接AC、BD.
∵PA=AB,∴∠ABP=∠APB.
∵∠ABP=∠ACP,∠APB=∠ACB,∴∠ACB=∠ACP.
∵AD∥BC,∴∠DAC=∠ACB,∴∠ACP=∠DAC,∴AF=FC.
∵AE=EF=FD,設(shè)FD=x,則FC=AF=2x.
∵四邊形ABCD為矩形,∴AD=BC,∠ABC=∠ADC=90°,∴AC為⊙O的直徑.
在Rt△DFC中,FC=2FD,∴∠DCF=30°,∴∠ACB=∠ACP=30°.
∵⊙O的半徑為1,∴AC=2,∴AB=1,BC=,∴AD=BC=.
∵AE=EF=FD,∴AE=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)與的圖象相交于點(diǎn),且點(diǎn)的縱坐標(biāo)為,則關(guān)于的方程的解是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式——利用函數(shù)圖象研究其性質(zhì)——運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程. 在畫函數(shù)圖象時(shí),我們通過描點(diǎn)、平移、對稱的方法畫出了所學(xué)的函數(shù)圖象. 同時(shí),我們也學(xué)習(xí)了絕對值的意義,結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題
在函數(shù)中,自變量的取值范圍是全體實(shí)數(shù),下表是與的幾組對應(yīng)值:
0 | 1 | 2 | 3 | ||||
y | … | 0 | 1 | 2 | 3 | 2 | … |
(1)根據(jù)表格填寫:_______.
(2)化簡函數(shù)解析式:
當(dāng)時(shí),_______;
當(dāng)時(shí),______.
(3)在給出的平面直角坐標(biāo)系中,請用你喜歡的方法畫出這個(gè)函數(shù)的圖象并解決以下問題;
①該函數(shù)的最大值為_______.
②若為該函數(shù)圖象上不同的兩點(diǎn),則________.
③根據(jù)圖象可得關(guān)于的方程的解為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G.
(1)求四邊形OEBF的面積;
(2)求證:OGBD=EF2;
(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為直線BC上一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),在AD的右側(cè)作△ACE,使得AE=AD,∠DAE=∠BAC,連接CE.
(1)當(dāng)D在線段上時(shí).
①求證:.
②請判斷點(diǎn)D在何處時(shí),,并說明理由.
(2)當(dāng)時(shí),若中最小角為28°,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,點(diǎn)D是弧BC的中點(diǎn),PD切⊙O于點(diǎn)D.
(1)求證:DP⊥AP;
(2)若PD=,PC=1,求圖中陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,在邊上,在線段上,,是等邊三角形,邊交邊于點(diǎn),邊交邊于點(diǎn).
求證:;
當(dāng)為何值時(shí),以為圓心,以為半徑的圓與相切?
設(shè),五邊形的面積為,求與之間的函數(shù)解析式(要求寫出自變量的取值范圍);當(dāng)為何值時(shí),有最大值?并求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOB交AB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過點(diǎn)D作DE∥OC交y軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n2﹣8n+16+|n﹣2m|=0.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)D為AB中點(diǎn),求OE的長;
(3)如圖2,若點(diǎn)P(x,﹣2x+4)為直線AB在x軸下方的一點(diǎn),點(diǎn)E是y軸的正半軸上一動(dòng)點(diǎn),以E為直角頂點(diǎn)作等腰直角△PEF,使點(diǎn)F在第一象限,且F點(diǎn)的橫、縱坐標(biāo)始終相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是的中點(diǎn),是邊上一動(dòng)點(diǎn),連結(jié),取的中點(diǎn),連結(jié).小夢根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對的面積與的長度之間的關(guān)系進(jìn)行了探究:
(1)設(shè)的長度為,的面積,通過取邊上的不同位置的點(diǎn),經(jīng)分析和計(jì)算,得到了與的幾組值,如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
3 | 1 | 0 | 2 | 3 |
根據(jù)上表可知,______,______.
(2)在平面直角坐標(biāo)系中,畫出(1)中所確定的函數(shù)的圖象.
(3)在(1)的條件下,令的面積為.
①用的代數(shù)式表示.
②結(jié)合函數(shù)圖象.解決問題:當(dāng)時(shí),的取值范圍為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com