【題目】如圖,AB是⊙O的直徑,AC是弦,點(diǎn)D是弧BC的中點(diǎn),PD切⊙O于點(diǎn)D.
(1)求證:DP⊥AP;
(2)若PD=,PC=1,求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)詳見解析;(2).
【解析】
(1)連接BC、OD,則可判斷OD∥AP,再由切線的性質(zhì)可得∠OPD=90°,繼而得出結(jié)論;
(2)連接OC、CD,由題意可得∠PDC=30°,∠CDO=60°.求出OD的長,∠COD的度數(shù),根據(jù)S陰影=S梯形ODPC﹣S扇形OCD計(jì)算即可.
(1)連接BC、OD,則∠ACB=90°(圓周角定理).
∵點(diǎn)D是弧BC的中點(diǎn),∴OD⊥BC,∴OD∥AP.
又∵PD是⊙O切線,∴∠OPD=90°,∴∠P=90°,∴DP⊥AP.
(2)連接OC、CD.
∵PD=,PC=1,∴∠PDC==,CD==2,∴∠PDC=30°,∴∠CDO=60°.
∵OC=OD,∴△OCD是等邊三角形,∴∠COD=∠DOB=∠AOC=60°,∴△AOC是等邊三角形,∴AO=OC=AC=OD=CD=2,則S陰影=S梯形ODPC﹣S扇形OCD=×(OD+CP)×PD﹣= =﹣π=﹣π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象在第一
象限相交于點(diǎn),過點(diǎn)分別作軸、軸的垂線,垂足為點(diǎn)、,如果四邊形是正方形.
求一次函數(shù)的解析式.
一次函數(shù)的圖象與軸交于點(diǎn).在軸上是否存在一點(diǎn),使得最?若存在,請求出點(diǎn)坐標(biāo)及最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個正整數(shù)能表示成(是正整數(shù),且)的形式,則稱這個數(shù)為“明禮崇德數(shù)”,與是的一個平方差分解. 例如:因?yàn)?/span>,所以5是“明禮崇德數(shù)”,3與2是5的平方差分解;再如:(是正整數(shù)),所以也是“明禮崇德數(shù)”,與是的一個平方差分解.
(1)判斷:9_______“明禮崇德數(shù)”(填“是”或“不是”);
(2)已知(是正整數(shù),是常數(shù),且),要使是“明禮崇德數(shù)”,試求出符合條件的一個值,并說明理由;
(3)對于一個三位數(shù),如果滿足十位數(shù)字是7,且個位數(shù)字比百位數(shù)字大7,稱這個三位數(shù)為“七喜數(shù)”.若既是“七喜數(shù)”,又是“明禮崇德數(shù)”,請求出的所有平方差分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的半徑為,點(diǎn)、、、在上,且四邊形是矩形,點(diǎn)是劣弧上一動點(diǎn),、分別與相交于點(diǎn)、點(diǎn).當(dāng)且時(shí),的長度為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程或方程組解應(yīng)用題:
為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點(diǎn)10千米.他用騎公共自行車的方式平均每小時(shí)行駛的路程比他用自駕車的方式平均每小時(shí)行駛的路程少45千米,他從家出發(fā)到上班地點(diǎn),騎公共自行車方式所用的時(shí)間是自駕車方式所用的時(shí)間的4倍.小張用騎公共自行車方式上班平均每小時(shí)行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從圖中的二次函數(shù)y=ax2+bx+c圖象中,觀察得出了下面的五條信息:
①b>0 ②c=0;③函數(shù)的最小值為﹣3;④a﹣b+c>0;⑤當(dāng)x1<x2<2時(shí),y1>y2.
(1)你認(rèn)為其中正確的有哪幾個?(寫出編號)
(2)根據(jù)正確的條件請求出函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車同時(shí)從地出發(fā)前往地,其中甲車選擇有高架的路線,全程共,乙車選擇沒有高架的路線,全程共.甲車行駛的平均速度比乙車行駛的平均速度每小時(shí)快千米,乙車到達(dá)地花費(fèi)的時(shí)間是甲車的倍.問甲、乙兩車行駛的平均速度分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣x+b與拋物線的另一個交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個單位的速度運(yùn)動到點(diǎn)E,再沿線段ED以每秒個單位的速度運(yùn)動到點(diǎn)D后停止,問當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)Q在整個運(yùn)動過程中所用時(shí)間最少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com