【題目】如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于______度.
【答案】30
【解析】據(jù)直角三角形斜邊上的中線等于斜邊的一半可得到AC=AE,從而得到∠A=∠ACE,再由折疊的性質(zhì)及三角形的外角性質(zhì)得到∠B=2∠A,從而不難求得∠A的度數(shù).
解:∵在Rt△ABC中,CE是斜邊AB的中線,
∴AE=CE,
∴∠A=∠ACE,
∵△CED是由△CBD折疊而成,
∴∠B=∠CED,
∵∠CEB=∠A+∠ACE=2∠A,
∴∠B=2∠A,
∵∠A+∠B=90°,
∴∠A=30°.
故答案為:30.
考查:(1)在直角三角形中,斜邊上的中線等于斜邊的一半;(2)三角形的外角性質(zhì):三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB=8cm,在直線AB上畫線BC,使它等于3cm,則線段AC等于( )
A.11cm
B.5cm
C.11cm或5cm
D.8cm或11cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為半圓內(nèi)一點,O為圓心,直徑AB長為4cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉(zhuǎn)至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為______cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次綜合實踐活動中,小明要測某地一座古塔AE的高度.如圖,已知塔基頂端B(和A、E共線)與地面C處固定的繩索的長BC為80m.她先測得∠BCA=35°,然后從C點沿AC方向走30m到達D點,又測得塔頂E的仰角為50°,求塔高AE.(人的高度忽略不計,結(jié)果用含非特殊角的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC.
(1)試用直尺和圓規(guī)在AC上找一點D,使AD=BD(不寫作法,但需保留作圖痕跡).
(2)在(1)中,連接BD,若BD=BC,求∠A的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com