【題目】如圖,中,,以為直徑作⊙,分別交,于點(diǎn),.
(1)求證:;
(2)若,求的度數(shù);
(3)過(guò)點(diǎn)作⊙的切線(xiàn),交的延長(zhǎng)線(xiàn)于點(diǎn),當(dāng)時(shí),求圖中陰影部分的面積.
【答案】(1)詳見(jiàn)解析;(2)115°;(3)4-π.
【解析】
(1)利用等腰三角形的性質(zhì),底邊上的高也是底邊上的中線(xiàn);(2)先求出∠BAE,再利用圓內(nèi)接四邊形的對(duì)角互補(bǔ)即可得出結(jié)論;(3)先利用切線(xiàn)得出∠OEF=90°,從而得出等腰直角三角形,再用面積之差求出陰影部分面積.
(1)如圖,連接AE,
∵AB是O的直徑,
∴∠AEB=90°,
∴AE⊥BC,
∵AB=AC,
∴BE=CE;
(2)由(1)知,∠BAE=∠BAC=25°,
∴∠ABE=90°∠BAE=65°,
∵四邊形ABED是圓內(nèi)接四邊形,
∴∠ADE=180°∠ABE=115°;
(3)連接OE,
∵EF且O于E,
∴OE⊥EF,
∵AO=EF=OE=,
∴∠BOE=45°,
∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明為了測(cè)量小河對(duì)岸大樹(shù)BC的高度,他在點(diǎn)A測(cè)得大樹(shù)頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測(cè)得樹(shù)頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為1:2.
(1)求小明從點(diǎn)A到點(diǎn)D的過(guò)程中,他上升的高度;
(2)大樹(shù)BC的高度約為多少米?(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商銷(xiāo)售每箱進(jìn)價(jià)為40元的蘋(píng)果,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格銷(xiāo)售,平均每天銷(xiāo)售90箱,價(jià)格每提高1元,平均每天少銷(xiāo)售3箱.
(1)求平均每天銷(xiāo)售量箱與銷(xiāo)售價(jià)元/箱之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線(xiàn)y=ax2+bx﹣3與x軸交于A點(diǎn),與y軸交于C點(diǎn),且A(1,0)、B(3,0),點(diǎn)D是拋物線(xiàn)的頂點(diǎn).
(1)求拋物線(xiàn)的解析式
(2)在y軸上是否存在M點(diǎn),使得△MAC是以AC為腰的等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)點(diǎn)P為拋物線(xiàn)上的動(dòng)點(diǎn),且在對(duì)稱(chēng)軸右側(cè),若△ADP面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,cm, cm,在中,,cm,cm.EF在BC上,保持不動(dòng),并將以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),移動(dòng)開(kāi)始前點(diǎn)F與點(diǎn)B重合,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),停止移動(dòng).邊DE與AB相交于點(diǎn)G,連接FG,設(shè)移動(dòng)時(shí)間為t(s).
(1)從移動(dòng)開(kāi)始到停止,所用時(shí)間為________s;
(2)當(dāng)DE平分AB時(shí),求t的值;
(3)當(dāng)為等腰三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,分別將、沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過(guò)圓心,若⊙O的半徑為4,則四邊形ABCD的面積是( 。
A.8B.C.32D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠C=α.⊙O是△ABC的內(nèi)切圓,⊙P分別與CA的延長(zhǎng)線(xiàn)、CB的延長(zhǎng)線(xiàn)以及直線(xiàn)AB均只有一個(gè)公共點(diǎn),⊙O的半徑為m,⊙P的半徑為n.
(1)當(dāng)α=90°時(shí),AC=6,BC=8時(shí),m= ,n= .
(2)當(dāng)α取下列度數(shù)時(shí),求△ABC的面積(用含有m、n的代數(shù)式表示).
①如圖①,α=90°;
②如圖②,α=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)y=﹣x2+mx+n交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,2).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)若點(diǎn)M在拋物線(xiàn)上,且S△AOM=2S△BOC,求點(diǎn)M的坐標(biāo);
(3)如圖2,設(shè)點(diǎn)N是線(xiàn)段AC上的一動(dòng)點(diǎn),作DN⊥x軸,交拋物線(xiàn)于點(diǎn)D,求線(xiàn)段DN長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象在第一象限交于點(diǎn),與軸的負(fù)半軸交于點(diǎn),且.
(1)求函數(shù)和的表達(dá)式.
(2)已知直線(xiàn)與軸相交于點(diǎn)在第一象限內(nèi),求反比例函數(shù)的圖象上一點(diǎn),使得.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com