【題目】已知拋物線(a>0)與x軸相交于A,B兩點(點A在點B的左側),點P是拋物線上一點,且PB=AB,∠PBA=120°,如圖所示.

(1)求拋物線的解析式.

(2)設點M(m,n)為拋物線上的一個動點,且在曲線PA上移動.

①當點M在曲線PB之間(含端點)移動時,是否存在點M使△APM的面積為?若存在,求點M的坐標;若不存在,請說明理由.

②當點M在曲線BA之間(含端點)移動時,求|m|+|n|的最大值及取得最大值時點M的坐標.

【答案】(1);(2)存在,M(3,;M()或(,)時,|m|+|n|的最大值為

【解析】

試題分析:(1)先求出A、B兩點坐標,然后過點P作PC⊥x軸于點C,根據(jù)∠PBA=120°,PB=AB,分別求出BC和PC的長度即可得出點P的坐標,最后將點P的坐標代入二次函數(shù)解析式即;

(2)①過點M作ME⊥x軸于點E,交AP于點D,分別用含m的式子表示點D、M的坐標,然后代入△APM的面積公式DMAC,根據(jù)題意列出方程求出m的值;

②根據(jù)題意可知:n<0,然后對m的值進行分類討論,當﹣2≤m≤0時,|m|=﹣m;當0<m≤2時,|m|=m,列出函數(shù)關系式即可求得|m|+|n|的最大值.

試題解析:(1)如圖1,令y=0代入,∴,∵a>0,∴,∴x=±2,∴A(﹣2,0),B(2,0),∴AB=4,過點P作PC⊥x軸于點C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:PC=,∵OC=OC+BC=4,∴P(4,),把P(4,)代入,∴=16a﹣4a,∴a=,∴拋物線解析式為;

(2)∵點M在拋物線上,∴,∴M的坐標為(m,;

①當點M在曲線PB之間(含端點)移動時,∴2≤m≤4,如圖2,過點M作ME⊥x軸于點E,交AP于點D,設直線AP的解析式為y=kx+b,把A(﹣2,0)與P(4,)代入y=kx+b,得:,解得,∴直線AP的解析式為:,令x=m代入,∴,∴D的坐標為(m,),∴DM==,∴S△APM=DMAE+DMCE

=DM(AE+CE)=DMAC=,當S△APM=時,∴=,∴解得m=3或m=﹣1,∵2≤m≤4,∴m=3,此時,M的坐標為(3,);

②當點M在曲線BA之間(含端點)移動時,∴﹣2≤m≤2,n<0,當﹣2≤m≤0時,∴|m|+|n|=﹣m﹣n==,當m=時,∴|m|+|n|可取得最大值,最大值為,此時,M的坐標為(,),當0<m≤2時,∴|m|+|n|=m﹣n==,當m=時,∴|m|+|n|可取得最大值,最大值為,此時,M的坐標為(),綜上所述,當點M在曲線BA之間(含端點)移動時,M的坐標為(,)或(,)時,|m|+|n|的最大值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以點P(-1,0)為圓心的圓,交x軸于B、C兩點(BC的左側),交y軸于A、D兩點(AD的下方),AD=,將ABC繞點P旋轉180°,得到MCB.

(1)求B、C兩點的坐標;

(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點M的坐標;

(3)動直線l從與BM重合的位置開始繞點B順時針旋轉,到與BC重合時停止,設直線lCM交點為E,點QBE的中點,過點EEGBCG,連接MQ、QG.請問在旋轉過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°

1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡:

①作∠ACB的平分線,交斜邊AB于點D;

②過點DAC的垂線,垂足為點E

(2)在(1作出的圖形中,若CB=6,DE=4,則BCD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線經(jīng)過點M(1,3)和N(3,5)

(1)試判斷該拋物線與x軸交點的情況;

(2)平移這條拋物線,使平移后的拋物線經(jīng)過點A(﹣2,0),且與y軸交于點B,同時滿足以A、O、B為頂點的三角形是等腰直角三角形,請你寫出平移過程,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解全市九年級學生某次數(shù)學模擬考試情況,現(xiàn)從全市30000名九年級考生中隨機抽取部分學生的數(shù)學成績進行調(diào)查,并將調(diào)查結果繪制成如下圖表:

分數(shù)段

頻數(shù)

頻率

 x<60

 20

 0.10

 60≤x<70

 28

 0.14

  70≤x<80

 54

 0.27

 80≤x<90

 a

 0.20

  90≤x<100

 24

 0.12

  100≤x<110

 18

 b

  110≤x<120

 16

 0.08

請根據(jù)以上圖表提供的信息,解答下列問題:

(1)表格中的a=   ,b=   ;

(2)請補全頻數(shù)分布直方圖;

(3)如果把成績在90分以上(含90分)定為優(yōu)秀,那么該市30000名九年級學生中本次數(shù)學模擬考試成績?yōu)閮?yōu)秀的學生約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:x2﹣5x=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于以下說法:①買一張彩票一定中獎;②從一副普通撲克牌中任意抽取一張,一定是紅桃;判斷正確的是(

A.①②都正確B.只有①正確C.只有②正確D.①②都錯誤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線l過正方形ABCD的頂點B,點A、C到直線l的距離分別是AE=1,CF=2,則EF長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,∠A=∠C=90°,BE、DF分別是∠ABC、∠ADC的平分線.求證:

(1)∠1+∠2=90°;

(2)BE∥DF.

查看答案和解析>>

同步練習冊答案