如圖,△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4,則BD的值為( 。
A.3B.2C.1D.l

∵∠ACB=90°,∠A=30°,AB=4,
∴CB=
1
2
AB=2,∠B=60°,
∵CD是高,
∴∠BDC=90°,
∴∠BCD=30°,
∴BD=
1
2
BC=1,
故選C.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

若直角三角形斜邊上的高和中線分別是5cm,6cm,則它的面積是( 。
A.60cm2B.45cm2C.30cm2D.15cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,如果∠A=45°,AB=12,那么BC=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)計算:2×(
2
+2)-|
2
-1|
;
(2)小華家在裝修房子,計劃用60塊正方形的地板磚鋪滿面積是15m2的正方形客廳,試問小華家需要購買邊長是多少的地板磚?
(3)如圖是房屋設計圖的一部分,點D是斜梁AB的中點,立柱BC,DE均垂直于橫梁AC,已知DE=2m,∠A=30°,求斜梁AB與斜柱DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在△ABC與△BDE中,∠ABC=∠BDE=90°,BC=DE,AB=BD,M、M′分別為AB、BD中點.
(1)探索CM與EM′有怎樣的數(shù)量關系?請證明你的結論;
(2)如圖2,連接MM′并延長交CE于點K,試判斷CK與EK之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,D為斜邊AB中點,DC=5cm,則AB=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.
(1)某研究小組在進行課題學習時,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.(如圖2)
問題.試在圖3的梯形中畫出至少五條黃金分割線,并說明理由.
(2)類似“黃金分割線”得“黃金分割面”定義:截面a將一個體積為V的圖形分成體積為V1、V2的兩個圖形,且
V1
V
=
V2
V1
,則稱直線a為該圖形的黃金分割面.
問題:如圖4,長方體ABCD-EFGH中,T是線段AB上的黃金分割點,證明經過T點且平行于平面BCGF的截面QRST是長方體的黃金分割面.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將兩塊直角三角板的斜邊重合,E是兩直角三角形公共斜邊AC的中點.D、B分別為直角頂點,連接DE、BE、DB,∠DAC=60°,∠BAC=45°.則∠EDB的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知三角形的三邊長分別為
21
、5、2,則該三角形最長邊上的中線長為______.

查看答案和解析>>

同步練習冊答案