【題目】如圖,A、B是直線m上兩個(gè)定點(diǎn),C是直線n上一個(gè)動(dòng)點(diǎn),且m∥n.以下說法:
①△ABC的周長不變;
②△ABC的面積不變;
③△ABC中,AB邊上的中線長不變.
④∠C的度數(shù)不變;
⑤點(diǎn)C到直線m的距離不變.
其中正確的有________(填序號).
【答案】②⑤
【解析】①∵當(dāng)點(diǎn)C運(yùn)動(dòng)時(shí),AC+BC的值不固定,
∴△ABC的周長不確定,
∴①錯(cuò)誤;
②∵m∥n,
∴C到AB的距離相等,
設(shè)距離為d,
則△ABC的面積=×AB×d,
∴△ABC的面積不變,
∴②正確;
③∵當(dāng)點(diǎn)C運(yùn)動(dòng)時(shí),
∴連接點(diǎn)C和AB的中點(diǎn)的線段的長不確定,
∴③錯(cuò)誤;
④∵當(dāng)點(diǎn)C運(yùn)動(dòng)時(shí),
∴∠ACB的大小不確定,
∴④錯(cuò)誤;
⑤∵m∥n,
∴點(diǎn)C到直線m的距離不變,
∴⑤正確;
故答案為:②⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知, 與互余, 平分.
(1)在圖1中,若,則______, ______.
(2)在圖1中,設(shè), ,請?zhí)骄?/span>與之間的數(shù)量關(guān)系(必須寫出推理的主要過程,但每一步后面不必寫出理由);
(3)在已知條件不變的前提下,當(dāng)繞著點(diǎn)O順時(shí)針轉(zhuǎn)動(dòng)到如圖2的位置,此時(shí)與之間的數(shù)量關(guān)系是否還成立?若成立,請說明理由;若不成立,請直接寫出此時(shí)與之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形和中,點(diǎn)為它們的直角頂點(diǎn),當(dāng)與有重疊部分時(shí):
(1)①連接,如圖1,求證: ;
②連接,如圖2,求證: ;
(2)當(dāng)與無重疊部分時(shí):連接,如圖3,當(dāng), 時(shí),計(jì)算四邊形面積的最大值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)y=+x的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=+x的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過程,請補(bǔ)充完整:
(1)函數(shù)y=+x的自變量x的取值范圍是;
(2)下表是y與x的幾組對應(yīng)值.
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(2,3),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是邊長為的等邊三角形,邊在射線上,且,點(diǎn)從點(diǎn)出發(fā),沿OM的方向以1cm/s的速度運(yùn)動(dòng),當(dāng)D不與點(diǎn)A重合時(shí),將繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)60°得到,連接DE.
(1)如圖1,求證: 是等邊三角形;
(2)如圖2,當(dāng)6<t<10時(shí),DE是否存在最小值?若存在,求出DE的最小值;若不存在,請說明理由.
(3)當(dāng)點(diǎn)D在射線OM上運(yùn)動(dòng)時(shí),是否存在以D,E,B為頂點(diǎn)的三角形是直角三角形?若存在,求出此時(shí)t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)、菱形的邊長1,面積為,則的值為( )
A、 B、 C、 D、
(2)、如圖,ABCD是正方形,E是CF上一點(diǎn),若DBEF是菱形,則∠EBC=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點(diǎn)作圓的切線.
已知:P為⊙O外一點(diǎn).
求作:經(jīng)過點(diǎn)P的⊙O的切線.
小敏的作法如下:
如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C;
(2)以點(diǎn)C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點(diǎn);
(3)作直線PA,PB.所以直線PA,PB就是所求作的切線.
老師認(rèn)為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是 ;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過點(diǎn)A(1,0),且當(dāng)x=0和x=5時(shí)所對應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣+bx+c的圖象分別交于B,C兩點(diǎn),點(diǎn)B在第一象限.
(1)求二次函數(shù)y=﹣+bx+c的表達(dá)式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點(diǎn),將點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是邊AD,AB的中點(diǎn),EF交AC于點(diǎn)H,則的值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com