【題目】如圖,在中,,平分,為線段上的一個動點,交直線于點.
(1)若,求的度數;
(2)當點在線段上運動時,求證:.
【答案】(1)25°;(2)見解析
【解析】
(1)中,首先根據三角形的內角和定理求得∠BAC的度數,再根據角平分線的定義求得∠DAC的度數,從而根據三角形的內角和定理即可求出∠ADC的度數,進一步求得∠E的度數;
(2)中,根據第(1)小題的思路即可推導這些角之間的關系.
解:(1)∵∠B=35°,∠ACB=85°,∴∠BAC=60°.
∵AD平分∠BAC,∴∠DAC=30°.
∴∠ADC=65°.
又∵∠DPE=90°,∴∠E=25°
(2)證明:∵∠B+∠BAC+∠ACB=180°,
∴∠BAC=180°-(∠B+∠ACB).
∵AD平分∠BAC,
∴∠BAD=∠BAC=90°- (∠B+∠ACB).
∴∠ADC=∠B+∠BAD=90°- (∠ACB-∠B).
∵PE⊥AD,∴∠DPE=90°.
∴∠ADC+∠E=90°.
∴∠E=90°-∠ADC,
即∠E= (∠ACB-∠B).
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,D是線段BC的延長線上一點,以AD為一邊在AD的右側作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.
(1)如圖1,點D在線段BC的延長線上移動,若∠BAC=30°,則∠DCE= .
(2)設∠BAC=α,∠DCE=β:
①如圖1,當點D在線段BC的延長線上移動時,α與β之間有什么數量關系?請說明理由;
②當點D在直線BC上(不與B、C重合)移動時,α與β之間有什么數量關系?請直接寫出你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在反比例函數y=(x>0)的圖象上,有點P1,P2,P3,P4,…,它們的橫坐標依次為2,4,6,8,…分別過這些點作x軸與y軸的垂線,圖中所構成的陰影部分的面積從左到右依次記為S1,S2,S3,…,Sn,則S1+S2+S3+…+Sn=_____(用含n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為( 。
A. 6 B. 9 C. 11 D. 無法計算
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,直線與軸負半軸、軸正半軸分別交于兩點,的長度分別為和,且滿足.
(1)是________三角形.
(2)如圖②,正比例函數的圖象與直線交于點,過兩點分別作于,于,若,,求的長.
(3)如圖③,為上一動點,以為斜邊作等腰直角,為的中點,連,試問:線段是否存在某種確定的數量關系和位置關系?寫出你的結論并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結AE.
(1)如圖1,當點D與M重合時,求證:四邊形ABDE是平行四邊形;
(2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.
(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.
①求∠CAM的度數;
②當FH=,DM=4時,求DH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中△ABC三個頂點的坐標分別是點A(﹣2,3)、點B(﹣1,1)、點C(0,2).
(1)作△ABC關于C成中心對稱的△A1B1C1;
(2)將△A1B1C1向右平移3個單位,作出平移后的△A2B2C2;
(3)在x軸上求作一點P,使PA1+PC1的值最小,并寫出點 P 的坐標.(不寫解答過程,直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象如圖所示,且關于的一元二次方程沒有實數根,有下列結論:①②③④其中,正確的是結論的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com