【題目】已知表示實(shí)數(shù)a,b的點(diǎn)在數(shù)軸上的位置如圖所示,下列結(jié)論錯誤的是( )

A. 1 B. 1<-ab C. 1b D. ba<-1

【答案】A

【解析】

首先根據(jù)數(shù)軸的特征,判斷出a、-1、0、1、b的大小關(guān)系;然后根據(jù)正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個負(fù)實(shí)數(shù)絕對值大的反而小,逐一判斷每個選項(xiàng)的正確性即可.

根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,可得a<-1<0<1<b,1<|a|<|b|,-b<a.

由圖可知,1<|a|<|b|,故選項(xiàng)A結(jié)論錯誤

|a|<|b|a<-1,b>1,

1<-ab,故選項(xiàng)B結(jié)論正確;

1<|a|<|b|b>1

1b,故選項(xiàng)C結(jié)論正確;

1<|a|<|b|,b>1,a<-1,

-b<a<-1,選項(xiàng)D結(jié)論正確.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】細(xì)心觀察圖形,認(rèn)真分析各式,然后解答問題.

OA22()212S1;

OA3212()23,S2

OA4212()24,S3;

(1)請用含有n(n為正整數(shù))的等式表示上述變化規(guī)律:OAn2________Sn________;

(2)若一個三角形的面積是2,計算說明它是第幾個三角形?

(3)求出S12S22S32S92的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校有一塊三角形草坪,數(shù)學(xué)課外小組的同學(xué)測得其三邊的長分別為AB=200米,AC=160米,BC=120米.

(1)小明根據(jù)測量的數(shù)據(jù),猜想△ABC是直角三角形,請判斷他的猜想是否正確,并說明理由;

(2)若計劃修一條從點(diǎn)CBA邊的小路CH,使CHAB于點(diǎn)H,求小路CH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1)∠B+BDC=180°;(2)∠1=2;(3∠3=∠4;(4∠B=∠5

A.1B.2C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB,CD被直線EF所截,如果要添加條件,使得MQ∥NP,那么下列條件中能判定MQ∥NP的是( )

A. ∠1∠2 B. ∠BMF∠DNF

C. ∠AMQ∠CNP D. ∠1∠2,∠BMF∠DNF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行于x軸的直線AC分別交拋物線 (x≥0)與 (x≥0)于B、C兩點(diǎn),過點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DE∥AC,交y2于點(diǎn)E,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.

(1)求拋物線的解析式;
(2)若直線BC的函數(shù)解析式為y’=kx+b,求當(dāng)滿足y<y’時,自變量x的取值范圍.
(3)平行于DE的一條動直線l與直線BC相交于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn) 為第一象限內(nèi)一點(diǎn),點(diǎn)軸正半軸上,且
1)求點(diǎn)的坐標(biāo);
2)動點(diǎn)以每秒2個單位長度的速度,從點(diǎn)出發(fā),沿軸正半軸勻速運(yùn)動,設(shè)點(diǎn)的運(yùn)動時間為秒,的面積為,請用含有的式子表示,并直接寫出的取值范圍;
3)如圖2,在(2)的條件下,點(diǎn)坐標(biāo)為,連接,過點(diǎn)軸的垂線交于點(diǎn),過點(diǎn) 軸的平行線,在點(diǎn)的運(yùn)動過程中,直線上是否存在一點(diǎn),使是以為腰的等腰直角三角形?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABE=ACD=RtAE=AD,ABC=ACB.求證:∠BAE=CAD

請補(bǔ)全證明過程,并在括號里寫上理由.

證明:在ABC中,

∵∠ABC=ACB

AB= ( )

RtABERtACD中,

=AC, =AD

RtABERtACD( )

∴∠BAE=CAD( )

查看答案和解析>>

同步練習(xí)冊答案