15.已知:點(diǎn)D在AB上,點(diǎn)E在AC上,BE和CD相交于點(diǎn)O,AD=AE,∠B=∠C.  求證:CD=BE.

分析 由條件證明△ABE≌△ACD即可.

解答 證明:
在△ABE和△ACD中
$\left\{\begin{array}{l}{∠B=∠C}\\{∠A=∠A}\\{AE=CD}\end{array}\right.$
∴△ABE≌△ACD(AAS)
∴CD=BE.

點(diǎn)評(píng) 本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即對(duì)應(yīng)邊、對(duì)應(yīng)角相等)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.根據(jù)表中的二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)y的對(duì)應(yīng)值,可判斷該二次函數(shù)的圖象與x軸( 。
x-1012
y4-0.5-2-0.5
A.只有一個(gè)交點(diǎn)B.有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè)
C.有兩個(gè)交點(diǎn),且它們均在y軸同側(cè)D.無(wú)交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在△ABC中,BD是∠ABC的平分線,DE∥BC,BC=7,AE=4,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系中,已知點(diǎn)P是反比例函數(shù)y=$\frac{k}{x}$圖象上一個(gè)動(dòng)點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)當(dāng)⊙P運(yùn)動(dòng)到與x軸也相切于K點(diǎn)時(shí),如圖1,判斷四邊形OAPK的形狀,并說(shuō)明理由.
(2)當(dāng)⊙P運(yùn)動(dòng)到與x軸相交于B、C兩點(diǎn)時(shí),已知B、C兩點(diǎn)的坐標(biāo)分別為B(1,0)、C(3,0),且四邊形ABCP為菱形,如圖2,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知:如圖1,點(diǎn)A在半圓O上運(yùn)動(dòng)(不與半圓的兩個(gè)端點(diǎn)重合),以AC為對(duì)角線作矩形ABCD,使點(diǎn)D落在直徑CE上,CE=8.將△ADC沿AC折疊,得到△AD'C.

(1)求證:AD'是半圓O的切線;
(2)如圖2,當(dāng)AB與CD'的交點(diǎn)F恰好在半圓O上時(shí),連接OA.
①求證:四邊形AOCF是菱形;
②求四邊形AOCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知直線l1:y=-$\frac{1}{2}$x-1分別與x、y軸交于點(diǎn)A、B.將直線l1平移后過(guò)點(diǎn)C(4,0)得到直線l2,l2交直線AD于點(diǎn)E,交y軸于點(diǎn)F,且EA=EC.
(1)求直線l2的解析式;
(2)若點(diǎn)P為x軸上任一點(diǎn),是否存在點(diǎn)P,使△DEP的周長(zhǎng)最小,若存在,求周長(zhǎng)的最小值及點(diǎn)P的坐標(biāo);
(3)已知M為第二象限內(nèi)直線l2上任一點(diǎn),過(guò)點(diǎn)M作MN平行于y軸,交直線l1于點(diǎn)N,點(diǎn)H為直線AE上任一點(diǎn).是否存在點(diǎn)M,使得△MNH是以H點(diǎn)為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖1,點(diǎn)P為∠MON的平分線上一點(diǎn),以P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),如果∠APB繞點(diǎn)P旋轉(zhuǎn)時(shí)始終滿(mǎn)足OA•OB=OP2,我們就把∠APB叫做∠MON的智慧角.
(1)如圖2,已知∠MON=90°,點(diǎn)P為∠MON的平分線上一點(diǎn),以點(diǎn)P為頂點(diǎn)的角的兩邊分別與射線OM,ON交于A,B兩點(diǎn),且∠APB=135°.求證:∠APB是∠MON的智慧角;
(2)如圖3,C是函數(shù)y=$\frac{3}{x}$(x>0)圖象上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)C的直線CD分別交x軸和y軸于點(diǎn)A,B兩點(diǎn),且滿(mǎn)足BC=2CA,請(qǐng)求出∠AOB的智慧角∠APB的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,A、B(0,2)兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),點(diǎn)P為x軸正半軸上任意一點(diǎn).點(diǎn)C在線段PB上,AC交x軸于點(diǎn)M,CD平分∠ACB交x軸于點(diǎn)D.
(1)如圖,若CB=CM,連BD.求證:BD=MD;
(2)在(1)的條件下,連接AD,若點(diǎn)N在線段AM上(不含A、M點(diǎn))運(yùn)動(dòng),且NE⊥PD于E,NF⊥AD于F.則在N點(diǎn)運(yùn)動(dòng)的過(guò)程中,NE+NF的值是否發(fā)生變化?若不變,請(qǐng)證明求值;若變化,請(qǐng)求出變化范圍.
(3)若點(diǎn)C在線段PB(不含P、B兩點(diǎn))運(yùn)動(dòng),其余條件不變,OH∥CD分別交AC、PB于G,H,在C點(diǎn)的運(yùn)動(dòng)過(guò)程中,$\frac{AC-BH}{CG}$的值是否發(fā)生變化?若不變,證明并求值;若變化,請(qǐng)求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系中,拋物線y=$\frac{1}{4}$x2-bx+c與x軸交于點(diǎn)A(8,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)P為第四象限拋物線上一點(diǎn),連接PB并延長(zhǎng)交y軸于點(diǎn)D,若點(diǎn)P的橫坐標(biāo)為t,CD長(zhǎng)為d,求d與t的函數(shù)關(guān)系式(并求出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,連接AC,過(guò)點(diǎn)P作PH⊥x軸,垂足為點(diǎn)H,延長(zhǎng)PH交AC于點(diǎn)E,連接DE,射線DP關(guān)于DE對(duì)稱(chēng)的射線DG交AC于點(diǎn)G,延長(zhǎng)DG交拋物線于點(diǎn)F,當(dāng)點(diǎn)G為AC中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案