在△ABC中,D是BC的中點(diǎn),且AD=AC,DE⊥BC,與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.
(1)求證:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面積.
(1)證明見試題解析;(2)4.5.
【解析】
試題分析:(1)利用D是BC邊上的中點(diǎn),DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定,就可以證明題目結(jié)論;
(2)過(guò)點(diǎn)A作AM⊥BC,垂足是M,利用等腰三角形性質(zhì)求出DM,利用平行線性質(zhì)定理,求出AM,從而求出△ABC的面積,再利用相似三角形的性質(zhì)就可以求出三角形FCD的面積.
試題解析:(1)∵D是BC邊上的中點(diǎn),DE⊥BC,∴BD=DC,∠EDB=∠EDC=90°,∴△BDE≌△EDC,∴∠B=∠DCE,∵AD=AC,∴∠ADC=∠ACB,∴△ABC∽△FCD;
(2)過(guò)點(diǎn)A作AM⊥BC,垂足是M,∵△ABC∽△FCD,BC=2CD,∴,,
∵DE⊥BC,∴D是BC邊上的中點(diǎn),∴BD=DC,∵BC=8,∴DC=4,∵AD=AC,AM⊥DC,∴DM=MC=2,∴BM=4+2=6,
∵DE⊥BC,AM⊥DC,∴DE∥AM,∴,∴,,,∴S△ABC=BC×AM=,∵,∴.
考點(diǎn):1.相似三角形的判定與性質(zhì);2.三角形的面積;3.全等三角形的性質(zhì);4.等腰三角形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com