【題目】發(fā)現(xiàn):

任意三個(gè)連續(xù)偶數(shù)的平方和是的倍數(shù).

驗(yàn)證:

(1)的結(jié)果是的幾倍?

(2)設(shè)三個(gè)連續(xù)偶數(shù)的中間一個(gè)為,寫出它們的平方和,并說明是的倍數(shù).

延伸:

(3)任意三個(gè)連續(xù)奇數(shù)的平方和,設(shè)中間一個(gè)為,被整除余數(shù)是幾呢?請寫出理由.

【答案】(1)14倍;(2)見解析;(3)整除后,余數(shù)為.

【解析】

1)直接計(jì)算出算式的結(jié)果除以4即可得答案;(2)由三個(gè)連續(xù)偶數(shù)的中間一個(gè)為,可得三個(gè)偶數(shù)為2n-2、2n2n+2,計(jì)算出三個(gè)數(shù)的和即可得答案;(3)由三個(gè)連續(xù)奇數(shù)的中間一個(gè)為+1,可得三個(gè)偶數(shù)為2n-12n+1、2n+3,計(jì)算出三個(gè)數(shù)的和即可得答案.

(1)(22+42+62)÷4=56÷4=14().

的結(jié)果是14.

(2)∵三個(gè)連續(xù)偶數(shù)為2n-22n、2n+2,

,

∴是的倍數(shù).

(3)∵三個(gè)連續(xù)奇數(shù)為2n-1、2n+1、2n+3

=12(n+1)+11

∴被整除后,余數(shù)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD內(nèi),將兩張邊長分別為64的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),矩形中末被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.當(dāng)AD-AB=2時(shí),S2-S1的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝即將到來的2017年元旦,某校舉行了書法比賽,賽后整理參賽同學(xué)的成績,并制作成圖表如下:

分?jǐn)?shù)段

頻數(shù)

頻率

60≤x<70

30

0.15

70≤x<80

m

0.45

80≤x<90

60

n

90≤x≤100

20

0.1

請根據(jù)以上圖表提供的信息,解答下列問題:

(1)這次共調(diào)查了   名學(xué)生;表中的數(shù)m=   ,n=   ;

(2)請?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;

(3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x<70所對應(yīng)扇形的圓心角的度數(shù)是   ;

(4)如果比賽成績在80分以上(含80分)可獲得獎(jiǎng)勵(lì),那么獲獎(jiǎng)概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)的圖象過點(diǎn)C0,1),頂點(diǎn)為Q23),點(diǎn)Dx軸正半軸上,且OD=OC

1)求直線CD的解析式;

2)求拋物線的解析式;

3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:CEQ∽△CDO;

4)在(3)的條件下,若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問:在P點(diǎn)和F點(diǎn)移動(dòng)過程中,PCF的周長是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國水資源比較缺乏,人均水量約為世界人均水量的四分之一,其中西北地區(qū)缺水尤為嚴(yán)重.一村民為了蓄水,他把一塊矩形白鐵皮四個(gè)角各切去一個(gè)同樣大小的小正方形后制作一個(gè)無蓋水箱用于接雨水.已知白鐵皮的長為280cm,寬為160cm(如圖).

(1)若水箱的底面積為16000cm2,請求出切去的小正方形邊長;

(2)對(1)中的水箱,若盛滿水,這時(shí)水量是多少升?(注:1升水=1000cm3水)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,點(diǎn)是對角線的中點(diǎn),點(diǎn)上一點(diǎn),且,連接并延長交于點(diǎn),過點(diǎn)的垂線,垂足為,交于點(diǎn)

1)求證:;

2)若,解答下列問題:

求證:

當(dāng)時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)40°得到△A1BC1,ABA1C1相交于點(diǎn)D,ACA1C1BC1分別交于點(diǎn)E、F.

求證:ΔBCF≌ΔBA1D.

當(dāng)∠C=40°時(shí),請你證明四邊形A1BCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案