【題目】如圖,△ABC中,∠ACB90°,DAB上一點(diǎn),過D點(diǎn)作AB垂線,交ACE,交BC的延長線于F

1)∠1與∠B有什么關(guān)系?說明理由.

2)若BCBD,請你探索ABFB的數(shù)量關(guān)系,并且說明理由.

【答案】1)∠1與∠B相等,理由見解析;(2)若BCBD,ABFB相等,理由見解析

【解析】

1)∠ACB=90°,∠1+F=90°,又由于DFAB,∠B+F=90°,繼而可得出∠1=B;
2)通過判定△ABC≌△FBDAAS),可得出AB=FB

解:(1)∠1與∠B相等,

理由:∵,△ABC中,∠ACB90°,

∴∠1+F90°,

FDAB,

∴∠B+F90°

∴∠1=∠B;

2)若BCBD,ABFB相等,

理由:∵△ABC中,∠ACB90°,DFAB,

∴∠ACB=∠FDB90°

在△ACB和△FDB中,

,

∴△ACB≌△FDBAAS),

ABFB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,分別是,的中點(diǎn),且.上一動(dòng)點(diǎn),則的最小值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黑白雙雄,縱橫江湖;雙劍合璧,天下無敵,這是武俠小說中的常見描述,其意思是指兩個(gè)人合在一起,取長補(bǔ)短,威力無比,在二次根式中也常有這種相輔相成的對子,如:,它們的積中不含根號,我們說這兩個(gè)二次根式互為有理化因式,其中一個(gè)是另一個(gè)的有理化因式,于是,二次根式除法可以這樣解:

.

像這樣通過分子、分母同乘一個(gè)式子把分母中的根號化去的方法,叫做分母有理化。

解決問題:

1的有理化因式是 ;

分母有理化得 ;

2)已知:,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)y=圖象上的任意一點(diǎn),過點(diǎn)A作AB∥x軸,AC∥y軸,分別交反比例函數(shù)y=的圖象于點(diǎn)B,C,連接BC,E是BC上一點(diǎn),連接并延長AE交y軸于點(diǎn)D,連接CD,則SDEC﹣SBEA=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺(tái)走基層欄目的一位記者乘汽車赴360km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時(shí)間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是

A)汽車在高速公路上的行駛速度為100km/h

B)鄉(xiāng)村公路總長為90km

C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h

D)該記者在出發(fā)后4.5h到達(dá)采訪地

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為半圓直徑,、為圓周上兩點(diǎn),且,交于點(diǎn),則圖中與相等的角有(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.

(1)請直接寫出D點(diǎn)的坐標(biāo).

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點(diǎn).

(1)求拋物線解析式;

(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△MOA的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)m為何值時(shí),S有最大值,這個(gè)最大值是多少?

(3)若點(diǎn)Q是直線y=﹣x上的動(dòng)點(diǎn),過Qy軸的平行線交拋物線于點(diǎn)P,判斷有幾個(gè)Q能使以點(diǎn)P,Q,B,O為頂點(diǎn)的四邊形是平行四邊形的點(diǎn),直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ANCB,BNAC同側(cè),BM、CN交于點(diǎn)D,ACBC,且∠A+MDN180°.

1)如圖1,當(dāng)∠NAC90°,求證:BMCN

2)如圖2,當(dāng)∠NAC為銳角時(shí),試判斷BMCN關(guān)系并證明;

3)如圖3,在(1)的條件下,且∠MBC30°,一動(dòng)點(diǎn)E在線段BM上運(yùn)動(dòng)過程中,連CE,將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CF,取BE中點(diǎn)P,連AP、FP.設(shè)四邊形APFC面積為S,若AM1,MC1,在E點(diǎn)運(yùn)動(dòng)過程中,請寫出S的取值范圍   

查看答案和解析>>

同步練習(xí)冊答案