【題目】如圖,已知拋物線y1=﹣x2+1,直線y2=﹣x+1,當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1,y2.若y1≠y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=2時,y1=﹣3,y2=﹣1,y1<y2,此時M=﹣3.下列判斷中:①當(dāng)x<0時,M=y1;②當(dāng)x>0時,M隨x的增大而增大;③使得M大于1的x值不存在;④使得M=的值是﹣或,其中正確的個數(shù)有( 。
A.1B.2C.3D.4
【答案】C
【解析】
先聯(lián)立兩函數(shù)解析式求出交點坐標(biāo),再根據(jù)M的定義結(jié)合圖形,利用二次函數(shù)的性質(zhì)對各小題分析判斷即可得解.
解:由題意得 ,
解得 ,
所以,拋物線與直線的兩交點坐標(biāo)為(0,1),(1,0),
∵當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1,y2.若y1≠y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.
∴①當(dāng)x<0時,由圖象可得y1<y2,故M=y1;故此選項正確;
②當(dāng)1>x>0時,y1>y2,M=y2,直線y2=﹣x+1中y隨x的增大而減小,故M隨x的增大而減小,此選項錯誤;
③由圖象可得出:M最大值為1,故使得M大于1的x值不存在,故此選項正確;
④當(dāng)﹣1<x<0,M=時,即y1=﹣x2+1=,
解得:x1=﹣,x2=(不合題意舍去),
當(dāng)0<x<1,M=時,即y2=﹣x+1=,
解得:x=,
故使得M=的值是﹣或,此選項正確.
故正確的有3個.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)畫出△ABC關(guān)于原點O成中心對稱的△A1B1C1;
(2)寫出△A1B1C1的頂點坐標(biāo);
(3)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標(biāo):
(3)在拋物線上存在點P(不與C重合),使得△APB的面積與△ACB的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,∠B=30°,弦BC=6,∠ACB的平分線交⊙O于D,連AD.
(1)求直徑AB的長.
(2)求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形的邊長.某一時刻,動點從點出發(fā)沿方向以的速度向點勻速運動;同時,動點從點出發(fā)沿方向以的速度向點勻速運動,問:
(1)經(jīng)過多少時間,的面積等于矩形面積的?
(2)是否存在時間t,使的面積達(dá)到3.5cm2,若存在,求出時間t,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)求拋物線頂點M的坐標(biāo);
(2)設(shè)拋物線與x軸交于A、B兩點,與y軸交于C點,求A、B、C的坐標(biāo)(點A在點B的左側(cè)),并畫出函數(shù)圖像的大致示意圖;
(3)根據(jù)圖像,寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動,設(shè)點D,E運動的時間是ts(0<t≤15),過點D作DF⊥BC于點F,連接DE,EF,若四邊形AEFD為菱形,則t的值為( )
A.20B.15C.10D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com