【題目】如圖,△ABC與△DEF均為等邊三角形,O為BC、EF的中點,則AD:BE的值為( )
A. :1
B. :1
C.5:3
D.不確定
【答案】A
【解析】解:連接OA、OD,
∵△ABC與△DEF均為等邊三角形,O為BC、EF的中點,
∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,
∴OD:OE=OA:OB= :1,
∵∠DOE+∠EOA=∠BOA+∠EOA
即∠DOA=∠EOB,
∴△DOA∽△EOB,
∴OD:OE=OA:OB=AD:BE= :1.
故選:A.
【考點精析】通過靈活運用等邊三角形的性質(zhì)和相似三角形的判定與性質(zhì),掌握等邊三角形的三個角都相等并且每個角都是60°;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點G,點E、F分別為AG、CD的中點,連接DE、FG.
(1)求證:四邊形DEGF是平行四邊形;
(2)當點G是BC的中點時,求證:四邊形DEGF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM,則下列五個結論中正確的是( )
①若菱形ABCD的邊長為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;
④連接AN,則AN⊥BE;
⑤當AM+BM+CM的最小值為2 時,菱形ABCD的邊長為2.
A.①②③
B.②④⑤
C.①②⑤
D.②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD置于平面直角坐標系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負方向以每秒1個單位的長度平移,設在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t,m與t的函數(shù)圖象如圖2所示.
(1)點A的坐標為 , 矩形ABCD的面積為;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠計劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表:
A種產(chǎn)品 | B種產(chǎn)品 | |
成本(萬元∕件) | 3 | 5 |
利潤(萬元∕件) | 1 | 2 |
(1)若工廠計劃獲利14萬元,問A,B兩種產(chǎn)品應分別生產(chǎn)多少件?
(2)若工廠投入資金不多于44萬元,且獲利多于14萬元,問工廠有哪幾種生產(chǎn)方案?
(3)在(2)條件下,哪種方案獲利最大?并求最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知在⊙O中,點C為劣弧AB上的中點,連接AC并延長至D,使CD=CA,連接DB并延長DB交⊙O于點E,連接AE.
(1)求證:AE是⊙O的直徑;
(2)如圖2,連接EC,⊙O半徑為5,AC的長為4,求陰影部分的面積之和.(結果保留π與根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫圖題:
(1)如圖,將△ABC繞點O順時針旋轉180°后得到△A1B1C1 . 請你畫出旋轉后的△A1B1C1;
(2)請你畫出下面“蒙古包”的左視圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑OD垂直于弦AB,垂足為點C,連接AO并延長交⊙O于點E,連接BE,CE.若AB=8,CD=2,則△BCE的面積為( )
A.12
B.15
C.16
D.18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點P是這個菱形內(nèi)部或邊上的一點.若以P,B,C為頂點的三角形是等腰三角形,則P,A(P,A兩點不重合)兩點間的最短距離為cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com