【題目】2020年東京奧運會的比賽門票開始接受公眾預(yù)訂.下表為奧運會官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票的人民幣價格,球迷小李用12000元做為預(yù)訂下表中比賽項目門票的資金.

比賽項目

票價(元/場)

男籃

1000

足球

800

乒乓球

500

(1)若全部資金用來預(yù)訂男籃門票和乒乓球門票共15張,問男籃門票和乒乓球門票各訂多少張?

(2)若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個球迷想預(yù)定上表中三種球類門票,其中足球門票與乒乓球門票數(shù)相同,且足球門票的費用不超過男籃門票的費用,問可以預(yù)訂這三種球類門票各多少張?

【答案】(1)男籃門票9張,則乒乓球門票6張;(2)足球門票與乒乓球門票數(shù)都預(yù)定5張,男籃門票數(shù)為5.

【解析】

1)設(shè)預(yù)定男籃門票x張,則乒乓球門票(15-x)張,根據(jù)題意可列出一元一次方程進(jìn)行求解即可;(2)設(shè)足球門票與乒乓球門票數(shù)都預(yù)定y張,則男籃門票數(shù)為(15-2y)張,

根據(jù)題意可列出不等式組,即可求出y的取值,再根據(jù)y為正整數(shù)得出y的值.

(1)設(shè)預(yù)定男籃門票x張,則乒乓球門票(15-x)

得:1000x+500(15-x)=12000

解得:x=9

所以15-x=15-9=6

∴男籃門票訂9張,乒乓球門票6張;

(2)設(shè)足球門票與乒乓球門票數(shù)都預(yù)定y張,則男籃門票數(shù)為(15-2y)張,

解得:≤y≤,

y為正整數(shù)可得:y=5,15-2y=5,

∴足球門票與乒乓球門票數(shù)都預(yù)定5張,則男籃門票數(shù)為5張.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yx2+bx+c經(jīng)過點AB、C,已知A(﹣1,0),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點為E,EFx軸于F點,Mm,0)是x軸上一動點,N是線段EF上一點,若∠MNC90°,請指出實數(shù)m的變化范圍,并說明理由.

3)如圖2,將拋物線平移,使其頂點E與原點O重合,直線ykx+2k0)與拋物線相交于點P、Q(點P在左邊),過點Px軸平行線交拋物線于點H,當(dāng)k發(fā)生改變時,請說明直線QH過定點,并求定點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,E、F是平行四邊形ABCD的對角線BD上的兩點,BEDF

求證:(1ADF≌△CBE;

2CEAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCADE,∠BAC=∠DAE=90°,ABAC,ADAE,C,D,E三點在同一條直線上,連接BD,則下列結(jié)論錯誤的是( 。

A. ABD≌△ACE B. ACE+∠DBC=45°

C. BDCE D. BAE+∠CAD=200°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,∠C和∠D的平分線交于M,DM的延長線交ADE,試猜想:

1CMDE的位置關(guān)系?

2MDE的什么位置上?并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,②,在平面直角坐標(biāo)系xoy中,點A的坐標(biāo)為(4,0),以點A為圓心,4為半徑的圓與x軸交于O,B兩點,OC為弦, , Px軸上的一動點,連結(jié)CP。

(1)求的度數(shù);

(2)如圖①,當(dāng)CP與⊙A相切時,求PO的長;

(3)如圖②,當(dāng)點P在直徑OB上時,CP的延長線與⊙A相交于點Q,問PO為何值時,是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售部有營業(yè)員16人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這16人某月的銷售量如下:

每人銷售件數(shù)

10

11

12

13

14

15

人數(shù)

1

3

4

3

3

2

1)這16位銷售員該月銷售量的眾數(shù)是_____,中位數(shù)是_____,平均數(shù)是_____.

2)若要使75%的營業(yè)員都能完成任務(wù),應(yīng)選什么統(tǒng)計量(平均數(shù)、中位數(shù)和眾數(shù))作為月銷售件數(shù)的定額?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c的對稱軸為x=,與x軸的一個交點A(,0),拋物線的頂點B縱坐標(biāo)1<yB<2,則以下結(jié)論:①abc<0;b2-4ac>0;3a-b=0;4a+c<0;<a<.其中正確結(jié)論的個數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊答案