【題目】如圖,已知點A在反比例函數(shù) 的圖象上,作,邊BC在x軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若的面積為6,則k=___.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點A、C的坐標(biāo);
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別為A(﹣1,2),B(﹣3,4),C(﹣1,6).
(1)畫出△ABC,并求出BC所在直線的解析式;
(2)畫出△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點O為圓心,OA為半徑作弧交AB于點A、點C,交OB于點D,若OA=3,則陰影都分的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:
數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.
理解:
⑴如圖,已知是⊙上兩點,請在圓上找出滿足條件的點,使為“智慧三角形”(畫出點的位置,保留作圖痕跡);
⑵如圖,在正方形中,是的中點,是上一點,且,試判斷是否為“智慧三角形”,并說明理由;
運用:
⑶如圖,在平面直角坐標(biāo)系中,⊙的半徑為,點是直線上的一點,若在⊙上存在一點,使得為“智慧三角形”,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=10cm,E為對角線BD上一動點,連接AE,CE,過E點作EF⊥AE,交直線BC于點F.E點從B點出發(fā),沿著BD方向以每秒2cm的速度運動,當(dāng)點E與點D重合時,運動停止.設(shè)△BEF的面積為ycm2,E點的運動時間為x秒.
(1)求證:CE=EF;
(2)求y與x之間關(guān)系的函數(shù)表達式,并寫出自變量x的取值范圍;
(3)求△BEF面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,于點,,為了研究圖中線段之間的關(guān)系,設(shè),,
(1)可通過證明,得到關(guān)于的函數(shù)表達式__________,其中自變量的取值范圍是___________;
(2)根據(jù)圖中給出的(1)中函數(shù)圖象上的點,畫出該函數(shù)的圖象;
(3)借助函數(shù)圖象,回答下列問題:①的最小值是__________;②已知當(dāng)時,的形狀與大小唯一確定,借助函數(shù)圖象給出的一個估計值(精確到0.1)或者借助計算給出的精確值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為美化小區(qū)環(huán)境,物業(yè)計劃安排甲、乙兩個工程隊完成小區(qū)綠化工作.已知甲工程隊每天綠化面積是乙工程隊每天綠化面積的2倍,甲工程隊單獨完成600m2的綠化面積比乙工程隊單獨完成600m2的綠化面積少用2天.
(1)求甲、乙兩工程隊每天綠化的面積分別是多少m2;
(2)小區(qū)需要綠化的面積為9600m2,物業(yè)需付給甲工程隊每天綠化費為0.3萬元,付給乙工程隊每天綠化費為 0.2萬元,若要使這次的綠化總費用不超過10萬元,則至少應(yīng)安排甲工程隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E作直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com