k為何值時,多項式x2-2xy+ky2+3x-5y+2能分解成兩個一次因式的積?
分析:首先由x
2+3x+2=(x+1)(x+2),可設(shè)多項式x
2-2xy+ky
2+3x-5y+2=(x+my+1)(x+ny+2),然后根據(jù)多項式乘以多項式的運算法則求得(x+my+1)(x+ny+2)的值,又由多項式相等時對應(yīng)項的系數(shù)相等,可得方程組
,解此方程組即可求得k的值.
解答:解:∵x
2+3x+2=(x+1)(x+2),
故可令x
2-2xy+ky
2+3x-5y+2=(x+my+1)(x+ny+2),
即x
2+(m+n)xy+mny
2+3x+(2m+n)y+2=x
2-2xy+ky
2+3x-5y+2,
∴
,
由①③可得:
,
∴k=mn=-3.
∴當(dāng)k=-3時,多項式x
2-2xy+ky
2+3x-5y+2能分解成兩個一次因式的積.
點評:此題考查了多項式因式分解的知識,多項式的乘法以及三元一次方程組的求解方法.此題難度較大,解題的關(guān)鍵是設(shè)多項式x2-2xy+ky2+3x-5y+2=(x+my+1)(x+ny+2),再由多項式的性質(zhì)求解.