精英家教網 > 初中數學 > 題目詳情

【題目】小李在某商場購買兩種商品若干次(每次商品都買) ,其中前兩次均按標價購買,第三次購買時,商品同時打折.三次購買商品的數量和費用如下表所示:

購買A商品的數量/

購買B商品的數量/

購買總費用/

第一次

第二次

第三次

1)求商品的標價各是多少元?

2)若小李第三次購買時商品的折扣相同,則商場是打幾折出售這兩種商品的?

3)在(2)的條件下,若小李第四次購買商品共花去了元,則小李的購買方案可能有哪幾種?

【答案】1商品標價為80, 商品標價為100.2)商場打六折出售這兩種商品.

3)有3種購買方案,分別是A商品5,B商品12;A商品10,B商品8;A商品15,B商品4.

【解析】

1)可設商品標價為, 商品標價為,根據圖表給的數量關系列出二元一次方程組解答即可.

2)求出第三次商品如果按原價買的價錢,再用實際購買費用相比即可.

3)求出兩種商品折扣價之后,根據表中數量關系列出二元一次方程,化簡后討論各種可能性即可.

:1)設商品標價為, 商品標價為,

由題意得,

解得.

所以商品標價為80, 商品標價為100.

2)由題意得,,

,

所以商場是打六折出售這兩種商品.

3商品折扣價為48, 商品標價為60

由題意得,,

化簡得, ,

,

由于皆為正整數,可列表:

15

10

5

4

8

12

所以有3種購買方案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l1yk1x+2x軸、y軸分別交于點A、B兩點,OAOB,直線l2yk2x+b經過點C1,﹣),與x軸、y軸和線段AB分別交于點E、F、D三點.

1)求直線l1的解析式;

2)如圖①:若ECED,求點D的坐標和BFD的面積;

3)如圖②:在坐標軸上是否存在點P,使PCD是以CD為底邊的等腰直角三角形,若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中點A(2,0),點P在射線 (x<0)上運動,設點P的橫坐標為a,以AP為直徑作⊙C,連接OP、PB,過點P作PQ⊥OP交⊙C于點Q.

(1)證明:∠AOP=∠BPQ;
(2)當點P在運動的過程中,線段PQ的長度是否發(fā)生變化,若變化,請用含a的代數式表示PQ的長;若不變,求出PQ的長;
(3)當tan∠APO= 時,①求點Q坐標;②點D是圓上任意一點,求QD+ OD的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,BAE+AED=180°1=2,那么M=N(下面是推理過程,請你填空).

解:∵∠BAE+AED=180°(已知)

(同旁內角互補,兩直線平行)

∴∠BAE= (兩直線平行,內錯角相等)

∵∠1=2

∴∠BAE1=

MAE=

(內錯角相等,兩直線平行)

∴∠M=N(兩直線平行,內錯角相等)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解不等式組 .請結合題意填空,完成本題的解答.
(1)解不等式①,得:;
(2)解不等式②,得:;
(3)把不等式①和②的解集在數軸上表示出來;
(4)不等式組的解集為:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,AB兩點在數軸上對應的數分別為﹣124

1)直接寫出A、B兩點之間的距離;

2)若在數軸上存在一點P,使得APPB,求點P表示的數.

3)如圖2,現(xiàn)有動點P、Q,若點P從點A出發(fā),以每秒5個單位長度的速度沿數軸向右運動,同時點Q從點B出發(fā),以每秒2個單位長度的速度沿數軸向左運動,當點Q到達原點O后立即以每秒3個單位長度的速度沿數軸向右運動,求:當OP4OQ時的運動時間t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,在ABCD中,連結對角線AC,∠CAD平分線AFCD于點F,∠ACD平分線CGAD于點GAF,CG交于點O,點EBC上一點,且∠BAE=∠GCD.

(1)如圖1,若ACD是等邊三角形,OC2,求ABCD的面積;

(2)如圖2,若ACD是等腰直角三角形,∠CAD90°,求證:CE2OFAC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知EF是⊙O的直徑,把∠A為60°的直角三角板ABC的一條直角邊BC放在直線EF上,斜邊AB與⊙O交于點P,點B與點O重合,且AC大于OE,將三角板ABC沿OE方向平移,使得點B與點E重合為止.設∠POF=x,則x的取值范圍是( )

A.30≤x≤60
B.30≤x≤90
C.30≤x≤120
D.60≤x≤120

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校申報“跳繩特色運動”學校一年后,抽樣調查了部分學生的“1分鐘跳繩”成績,并制成了下面的頻數分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補全頻數分布直方圖,扇形圖中m=
(2)若把每組中各個數據用這組數據的中間值代替(如A組80≤x<100的中間值是 =90次),則這次調查的樣本平均數是多少?
(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校2100名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?

查看答案和解析>>

同步練習冊答案